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Abstract- During the PacRim AirSAR campaign in Korea,
the ground truth data about soil moisture content and surface
roughness characteristics were collected. We intend to retrieve
the surface parameters over the bare soil from multi-
polarization and multi-frequency AirSAR data. In this study,
the theoretical scattering model, the IEM model is inverted by
two existing algorithms — the multi-dimensional regression
technique by Dawson et al. [1] and the inversion using 3-layer
artificial neural networks (ANNs) [4]. As the first step,
backscatter coefficients are calculated based on the ground
truth information, and then training patterns are generated
from within the valid ranges of surface parameters using the
IEM model. The trained inversion models are tested to a set of
AirSAR data as well as synthetic data. Root mean square
(RMS) errors of estimated soil moisture from the AirSAR data
are average 3.1% in the regression and 4.2% in the inversion
using the ANNs. The methods to improve the inversion
accuracy are investigated. First, the normalization of signal
parameters reduced the number of pixels that fail to reasonable
results in the regression model. Second, the use of co-
polarization ratio as input units in the ANNSs inversion scheme
improve the soil moisture estimation, which results in an
average RMS error of 2.9%.

. INTRODUCTION AND TEORETICAL BACKGROUND

Soil moisture content is an essential parameter in
agriculture and geo-hydrology and it has been a target in
many academic research projects. Applications of active
synthetic aperture radar (SAR) data have been investigated
by many scientists for its potential to monitor soil moisture
over large arearegardless of the weather and the presence of
the sun. For example, Oh et al. [ 7] have developed empirical
relations between backscatter coefficients and surface soil
moisture content. And Dawson et a. [1] have examined a
multidimensional statistical estimation method based on
theoretical scattering model and applied to experimental data.
Furthermore, Hoeben et al. [5] used active microwave
observations of the surface soil moisture content to estimate
the root zone soil moisture profile by dataassimilation.

During the PacRimIl AirSAR campaign in Korea, the
polarimetric SAR experiment was accompanied by detailed
ground truth measurements, which include soil moisture
contents, surface roughness characteristics, and surface
cover mapping. The surface roughness characteristics
investigated include root mean square (RMS) height and
correlation length in bare surface test sites. The goal of our
experiment is to correlate the analysed surface information

with retrieved information from fully polarimetric AirSAR
datain L- and P-band.

In this paper, soil moisture content and surface roughness
parameters are estimated from the AirSAR data observed at
HH and VV polarization at L- and P-band. In this section,
the theoretical background is illustrated. And thisis applied
tothe AirSAR data over test sitesin section  and

A. Scattering Model as a Forward Model

The backscatter coefficient is defined as a ratio of
received signal intensity to transmitted signal intensity. The
returned signal after being scattered against land surfaces
depends on the wave parameters and surface parameters.
The wave parameters consist of frequency, polarization state,
and an incidence angle. Although this information is
included in polarimetric SAR data set, the surface
parameters are unknown variables, which are implicit in the
backscatter coefficients. In case of bare surface, dielectric
properties and surface roughness characteristics such as
RMS height and correlation length belong to the surface
parameters. The relationships between backscatter
coefficients and surface parameters have been developed.
For example, theoretical models such as small perturbation
model, physical optics model, and geometrical optics model
and empirical models by Oh et a. [7] and Dubois et al. [3]
have been developed and applied. Among them, the
physicaly driven scattering model, the integral equation
method (IEM) model is known to have a relatively large
domain of validity, whereas the other theoretical models are
limited by the severe assumptions and empirical models
have over-restrictions [10]. Therefore, the IEM model is
selected as a forward model. The IEM model used in this
study isasimplified version through approximations so as to
simulate single scattering from randomly rough surfaces. A
criteriais
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where k isthe wave number, s isthe surface RMS height, / is

the surface correlation length, and € is arelative dielectric

constant of the soil. For further knowledge about the IEM
model and the model equations, refer © the literature by
Fung [4].



B. Conversion of Soil Moisture Content to Dielectric
Constant

The dielectric constant of a surface is one of variables in
the IEM model. So, the values of volumetric moisture
content need to be converted to dielectric constant.
According to the semi-empirical model of Peplinski et al. [8],
which is valid in the frequency range between 0.3 and 1.3
GHz, the dielectric constant is a function of soil texture,
wave frequency, soil temperature, and soil water content.
The principle and the procedure for conversion of soil
moisture content to dielectric constant are explained in
Dobson et al. [2] and Peplinski et a. [8]. Figure 1 illustrates
the changes of dielectric constant depending on soil water
content variations at G, L-, and Pband in the case of the
soil texture and temperature over our test sites.

C. Methodologies for Inversion

In the applications of remotely sensed data, it is important
to solve inverse problem as well as to construct the forward
relationships. Once a rigorous forward model, IEM modé is
established, inversion method determines the accuracy of
retrieved surface parameters. The goal of the inversion is to
extract surface RMS height s, surface correlation length /,
and volumetric soil moisture content m, from four
backscatter coefficients and an incidence angle, denoted by

Sy Sy ShysS,,,and j . Two methodologies are
reviewed in this subsection. One is the multi-dimensional
regression technique developed by Dawson et al. [1] and the
other is the inversion using artificial neural networks

(ANNS) [4].
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Fig. 1. The curves of dielectric constant depending on volumetric soil
moisture content variations at C-, L-, and P-band according to the semi-
empirical model of Dobson et al. and Peplinski et al.

(a) Review of the Multi-Dimensional Regression Technique

For the regression model, a ¢ th input vector is composed
of four backscatter coefficients and an incidence angle as Z ,
= {z,0.2,).z,3.2,@.z,(5} = {Su.S/ . Su.Shii}, -

And basis functions are organized as second order
polynomial functions. Given the dimension 5 of the input

vector Zq and the highest polynomial degree 2, total 21
basis functions compose a set of basis function as Ifq =
{f, @t (2D} = {Lz, (D0ecz, ()2, 2, (1) %, (2). %05z, (5)%} -

Jj th output a(j,Zq) isexpressed as the summationfor all 21
members of the basis function which is evaluated for the ¢ th
input vector Z, as
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where w (J, i) isthe weight connecting the i th basis function
f (i) toj thoutput q(,Z,) . The desired output vector of ¢

th patten is q, = {q,(,q,(2,9,(3} = {s./m}, .
Assuming that total N, training patterns are given, the error
for jth outputis
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The total mean square error for the systemis
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The training patterns of N, = 4,000 are used to compute the
weights in this study. The best set of coefficient w (j, i) can
be determined so that the mapping error of (3) is minimized.
Thisis done by taking the partial derivative of the error with
respect to each unknown coefficient and by equating the
result to zero as follows.

ﬂE/ N, N 3 .. . .
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from the above relations, the next results are
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Matrix form of equation (6) is as follows. 3 linear matrixes
of thesize 21x 21 can be derived as
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where N, = 4,000 and j=1, 2, or 3 in this study. The results of
theinversion are described in section

(b) Review of the Inversion Using ANNs

Inversion is also attempted using ANNS, which is suitable
for multidimensional retrieval from nonlinear scattering
model. A 3-layer perceptron networks with one hidden layer
is chosen. Each unit has a nonlinear sigmoid activation
function. An input vector into the first layer contains five
input signals, which are four backscatter coefficients and an
incidence angle as {u'(1),u*(2),u'(3),u*(4),u*(5)} =

{sL st,.,st s;,j}.InthesecondorthirdIayer,theinput

HH 1~ HH?
signal u?(i) or u3(i) is the weighted linear summation of
the outputs from the previous layer as

u?(i) = & w’ (i j) ¢ () ®
in the second layer, and
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in the third layer because there are 45 unitsin a hidden layer.
These are activated via the nonlinear sigmoide activation
function, in the case of the second layer,
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3 output signals s, /, and m, come out from the networks
after being scaled linearly. The fully connected networks is
trained by backpropagation learning algorithm [9], which
learning in the network is the process to minimize the sum of
the squared errors between the desired outputs called teacher
signal and the computed network outputs as

E :%‘éi(xs(i) - d@)f . (10)

While atraining pattern is fed into the networks sequentially,
the weights are updated as much as the difference of
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where misthelearning rate. Specifically,
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In this study, total 4,000 training patterns are generated
from the IEM model and the ANNSs are trained by total
40,000 iterations, ten times of the training patterns. One
example of the training errors during iterations is shown in
Fig. 2 and the results of the ANNs inversion are presented
and discussed in section

D. Spatial Analysis of the Distributed Data

The statistics considering not only the quantities but also
the sampling locations can be achieved by variogram
modeling [12]. The variogram measures the degree of
similarity of two samples taken the lag distance apart. When
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Fig. 2. Scatter plot of training errors during the backpropagation learning
(One scatter point represents an error per one training).



v(xl,) is an attribute of a pixel at a point x, and N is the

number of pairs of data points located by the lag distance
h = Dh , the definition of semi-variogramiis.

g +Dk) = ZNié[v(xi)- Wx, +h=DW)]>.  (16)

K

The semi-variograms are estimated for the AirSAR signal
parameters and soil moisture content measured on ground in
section

. DESCRIPTIONS OF DATA

A. Test Sites

Experimental sites are located at Jeju-si on Jeju island in
Korea. Since the Jeju island originated from the eruption of
basaltic volcano, the soil covering the island is characterized
by high porosity which ranges from 48.7% to 60.2% and
high permeability. The Soil is composed of sand of 15.9%
and clay of 28.2%. And the volumetric density and the

density of soil particle measure average 1.09 g/cm® and

2.47 glcm®, respectively. On September 30, the average

temperature was 23 . And it was cloudy and rained
intermittently. However the surface soil was not saturated
and runoff didn' t occur by rapid infiltration. Two flat bare
surfaces named as site L1 (Fig. 3) and site L2 are selected
for the estimation of soil moisture content from AirSAR data.

Data observed by P-band (0.45GHz frequency, 67cm
wavelength) and L-band (1.26GHz, 23cm) a HH
(Horizontally received and Horizontally transmitted), HV
(Horizontally received and Vertically transmitted), and VV
(Vertically received and Vertically transmitted) polarizations
were collected. Azimuth pixel spacing and range pixel
spacing of the AirSAR data are 4.63m and 3.3m,
respectively. Fig. 4 shows a set of AirSAR images around
theL1land L2 sites.

Fig. 3. PacRim-Il AirSAR experimental site L1 on Jeju island in Korea.
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Fig. 4. A set of AirSAR images around the test sites (the upper right
trapezoid of blue color depicts site L1 and the lower left rectangle of blue
color depicts site L2).

B. Roughness Characteristics Measured on Ground

The profiles of surface roughness were obtained each
location by spraying over a scale paper attached to atin plate
fixed vertically on ground. The profiles were obtained at
right angles when there is a linear directional trend. Two
profiles at each site are measured; the east-west direction
(EW) and the north-south direction (NS) in both L1 and L2
sites. And then, two roughness statistics were estimated from
the digitisation of surface heights. One is the standard
deviation of the surface height and the other is the surface
correlation length, which is estimated from the Gaussian
autocorrelation function fitted in Fig. 5. The Gaussian
autocorrelation function is defined as
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where x is the displacement and / is the correlation length

1 .
such that r (/) =—. Equation (17) can be converted to the
e

roughness spectrum via Fourier transformation as
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where k is the wave number and j is an incidence angle.
Equation (18) is inputted to the IEM model directly as a
roughness parameter. Table 1 shows roughness statistics and
normalized parameters with respect to the AirSAR wave
numbers information.
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Fig. 5. Measured and fitted surface autocorrelation functions
onsiteL1and L2.

MEASURED ROUGHNESS PARAMETERS IN EXPERIMENTAL SITES
Ng‘;"f DirectionHei;']\{l?cm) E&ﬁha?c?g) ks (L)| ks (P)|kt L) [#2 (P)
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s isasurface root mean square height in cm, / is a surface autocorrelation length in cm, andk isthe
wave number, which result in 0.27 for L-band and 0.094 for P-band.

B. Soil Moisture Content Measured on Ground

Volumetric soil moisture content was measured at
intervals of 30m with the use of Time Domain
Reflectometry (TDR) Probe. The probe measures the water
content of 0~12cm depth from land surfaces. The averages
and standard deviations of soil moisture content are 37.3%
and 3.7% in L1 site, respectively and 33.3% and 4.0% in L2
site, respectively. The frequency distributions of measured
soil moisture content are shown in Fig. 6. The relatively
wide ranges of the soil water content seem to be owing to
raindrop around the test date.

Particularly inside a selected area, total 60 soil samples
were collected with the regular interval of 4m in EW
direction and the interval of 7m in NS direction. The
gravimetric moisture contents were derived by comparing
the weights of soil contained in a controlled volume after
oven drying at 108 C with those before oven drying. This
detail measurements are used for the spatial analysis of the
soil moisture distribution. This is compared with the spatial
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Fig. 6. Frequency distributions of the soil moisture content measured
atsiteLland L2.

distribution of the AirSAR signal parametersin section

. RESULTS AND DISCUSSION

A. Estimation of Backscatter Coefficients

The backscatter coefficients by single scattering from
randomly rough surfaces are calculated using the [EM model.
The Dbackscatters at L- and P-band a& HH and VV
polarizations are simulated with s, /, and m, within the limits
measured on ground. And then its mean and standard
deviation are compared with those of the backscatter
coefficients in the AirSAR data, of which the pixels except
the bare soil area are masked. This statistics of clculated
and observed backscatter coefficients are tabulated in Table
2. The comparison shows the largest deviation at VV
polarization of L-band, whereas the smallest deviation at HH
of L-band. The biases influence the performance of
inversions, because the inversion models trained with the
synthetic data set are applied to the observed data set. And
so, both synthetic and observed backscatter coefficients are
normalized while training the inversion models and
estimating the surface parameters with the use of the
inversion models. The normalization of signal parameters
reduced the number of pixelsthat fail toreasonable resultsin
the regression model.

As a preliminary step for inversion, sensitivities are
examined. The scopes of surface parameters and the
corresponding changes of backscatter coefficients are based
on the ground truth information (Fig. 7). And the scope of an
incidence angle in Fig. 7 is based on the AirSAR data taken

TABLE 2
STATISTICS OF BACKSCATTER COEFFICIENTS IN dB
CALCULATED FROM THE IEM MODEL AND OBSERVED BY
AIRSAR

S | Sw | S | Sw
Calculation | Mean | -21.93 | -13.06 | -28.76 | -20.90
by IEM D 6.036 | 5587 | 3.947 | 4.069
AIRSAR data | Mean | -22.09 | -19.02 | -25.80 | -24.79
(Lland L2) D 3.846 | 3.607 | 4.349 | 4.136

SD means the standard deviation. The region except for L1 and L2 sitesis masked in the AirSAR
data.
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validation confirms the propriety of the inversion models.
The RMSerrors of the estimated outputs are summarized in
Table 4. Poorer results in the ANNs inversion model than in
the regression model requires further investigation about the
method.

Two inversion models are also applied to the AirSAR
data. The estimated surface parameters are shown in Table 6.
The average RMS errors of soil moisture content are 3.1%in
the regression model and 4.2% in the ANNs inversion model.

TABLE 3
LOWER AND UPPER LIMITS OF SURFACE PARAMETERS
s (cm) [ (cm) m, (%)
Ground truth [0.49, 1.30] [2.0, 11.9] [25.0, 45.0]
Synthetic data [0.1, 3.9] [0.2, 15.0] [21, 56]
TABLE 4

THE ROOT MEAN SQUARE ERRORS OF SURFACE PARAMETERS
ESTIMATED FROM SYNTHETIC DATA

s (cm) ! (cm) m, (%)
Regression 0.28 0.52 3.9
ANNSs inversion 0.45 0.90 5.4

Soil moisture content Incidence angle (degree)

Fig. 7. Change of the backscatter coefficientsregponding surface parameters
and an incidence angle.

in test sites. The backscatter coefficients are less sensitive to
soil moisture content than to surface roughness parameters.
This makes the estimation of soil water content difficult in
two inversion models, which is discussed in the next
subsection.

B. Estimation of Surface Parameters

4000 data sets are generated synthetically from the |IEM
model for the purpose of training two inversion models.

Each set contains the three surface parameters s, /, and m,_,

four backscatter coefficientss |, ,s,,,S,,ands,, and

an incidence angle j . Table 3 shows the lower and upper
limits of the measured and synthetic surface parameters. The
limits of synthetic data follow the criteria of equation (1), the
condition for the application to the IEM model, in addition
to cover the limits of measured surface parameters. The
synthetic data sets are used to train the multi-dimensional
regression model and the ANNs inversion model as
mentioned in section . The process for a training error of
the surface correlation length to converge has been shown
aready in Fig. 2. That showsthe best convergence. Namely,
average RM S error during last 100 iterations is 0.080cm for /,
whereas total error of equation (11) is0.11. This observation
is consistent with the best sensitivity of / in the previous
subsection. After the training, the synthetic backscatter
coefficients and incidence angle are re-inputted to the trained
inversion models. The estimated outputs versus desired
surface parameters are shown in Fig. 8. This cross-
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Fig. 8. Cross validation of two inversion models (Left: Multi-dmensond
regression technique, Right: Inversion using artificial neural network).



A modified input vector is investigated to improve the
soil moisture estimation by the ANNSs inversion. For the
purpose of searching signal parameters that have similar
gpatial  structure with measured soil moisture, semi-
variograms are estimated for soil moisture and signal
parameters. The results are shown in Fig. 9 and 10. The
scatter plots in Fig. 9 and 10 represent the experimental
sami -variogram defined in equation (16). A solid line and a
dotted line in Fig. 9 are a fitted exponential and Gaussian
semi -variogram model, respectively. The exponential model
of

& o0
h) =12.02¢1- - ——++1.219 19
o) =12021- 00 € 2 (19

fits better than Gaussian. According to (19), the range value
of measured soil moisture content is 36.35m. This means
that the two variables at farther distance than 36.36m are
independent. The signal parameters investigated include

L L L P P P SfoV Sf”V i
STy ST, Sy, S sy, Sy, ——,and . Fig. 10
s

HH ! w HV ! HH w HV Y SP
HH HH

shows the experimental semi-variogram of co-polarization

vV

backscatter ratio S at L- and P-band, which is sensitive
hh

to soil moisture according to Kim and van Zyl [6]. The range
values of each signal parameter in Table 5 are obtained by
fitting with the exponential semi-variogram model. It is
found that the range value of co-polarization at site L1
approaches to that of soil moisture. Therefore the co-
polarization ratios at L- and P- band are used for the
. . isk s? .U

elements of input vector, that is, {—=,s,,,—2-,S/, ] y
12 un HH g

instead of {s/,,,s},,S/,.Spj } - This attempt that denoted
by the ANNs2 in Table 6, is proved to improve soil moisture
content estimation; Average RMS error is reduced to 2.9%
and it is consistent with the ground truth information that
soil water content is higher in L1 site than in L2. The mean
values of extracted and measured data are summarized in
Table6.

16

€

©

S

o)) i

L

=

© &

3

£ 1 ‘ ¢ Measured
Q] — i
N 4 Expon'entlal

= e ==  Gaussian

0~y
0 10 20 30 40 50
Lag distance (m)
Fig. 9. Experimental semi-variogram of the soil moisture distribution
measured on ground.
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TABLES5
THE RANGE VALUES OF SIGNAL PARAMETERS IN mAT SITEL1
AND L2

L P
Sy S
L L L P P P 44 44
SHH SVV SHV SHH SVV SHV L P
SHH SHH

L1| 610 | 39.0 [ 73.4 | 77.0 | 52.3 107 38.9 21.0

L2| 240 | 40.0 | 67.6 181 39.0 694 116 47.3

TABLE 6
SURFACE PARAMETERS ESTIMATED FROM THE AIRSAR DATA
AND MEASURED ON GROUND

SiteL1 SiteL2

s(em) | I(cm) | m, (%) | s(cm) | I(cm) [ m, (%)

Regression 1.45 6.86 38.4 1.40 8.21 38.4

ANNs 1.73 7.97 354 177 7.00 39.8

ANNs2 1.39 8.43 40.3 2.31 6.70 36.0

Groundtruth | 0.75 3.10 37.3 1.12 8.30 33.3

The ANNsmeans the ANNs inversion model using original input vectors, whereas the ANNS2 means
the ANNSs inversion model using the modified input vectors as described in section

. SUMMARY

Estimation of bare surface soil moisture content is
investigated using multi-frequency and multi-polarization
AirSAR data set. During the PacRinm+I| AirSAR experiment
in Korea, the AirSAR data and ground truth data were
collected. Two existing inversion algorithms are applied to
the AirSAR data set taken at the bare soil areain Jeju. The
algorithms were developed to retrieve surface dielectric and
roughness parameters simultaneously. One is the multi-
dimensional regression model [1] and the other is the
inversion using artificial neural networks [4]. The IEM
model is used to calculate the backscatter coefficients with
the surface parameters measured on ground and to generate
synthetic data set in order to train the two inversion models.
The regression model is proved to perform better than the
ANNSs inversion model when applied to the AirSAR data as
well as the synthetic data. However, the ANNSs inversion
model can be modified to improve the soil moisture
inversion. For example, the use of co-polarization ratio as
elements of input vector improves the soil moisture
estimation qualitatively and quantitatively. Still further



investigation should be continued for the ANNSs inversion
model.

Both in situ and AirSAR data are taken on the day, when
it was cloudy and rained intermittently. Therefore this soil
moisture estimation example shows the case of almost
saturated surface. In this paper, only the average of surface
parameters has been validated. But, the distributed
estimation would be valuable both for the utilization in
agriculture and assimilation to hydrological model [11].
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