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Abstract- During the PacRimⅡ  AirSAR campaign in Korea, 
the ground truth data about soil moisture content and surface 
roughness characteristics were collected. We intend to retrieve 
the surface parameters over the bare soil from multi-
polarization and multi-frequency AirSAR data. In this study, 
the theoretical scattering model, the IEM model is inverted by 
two existing algorithms – the multi -dimensional regression 
technique by Dawson et al. [1] and the inversion using 3-layer 
artificial neural networks (ANNs) [4]. As the first step, 
backscatter coefficients are calculated based on the ground 
truth information, and then training patterns are generated 
from within the valid ranges of surface parameters using the 
IEM model. The trained inversion models are tested to a set of 
AirSAR data as well as synthetic data. Root mean square 
(RMS) errors of estimated soil moisture from the AirSAR data 
are average 3.1% in the regression and 4.2% in the inversion 
using the ANNs. The methods to improve the inversion 
accuracy are investigated. First, the normalization of signal 
parameters reduced the number of pixels that fail to reasonable 
results in the regression model. Second, the use of co-
polarization ratio as input units in the ANNs inversion scheme 
improve the soil moisture estimation, which results in an 
average RMS error of 2.9%. 

Ⅰ.  INTRODUCTION AND TEORETICAL BACKGROUND 

Soil moisture content is an essential parameter in 
agriculture and geo-hydrology and it has been a target in 
many academic research projects. Applications of active 
synthetic aperture radar (SAR) data have been investigated 
by many scientists for its potential to monitor soil moisture 
over large area regardless of the weather and the presence of 
the sun. For example, Oh et al. [7] have developed empirical 
relations between backscatter coefficients and surface soil 
moisture content. And Dawson et al. [1] have examined a 
multidimensional statistical estimation method based on 
theoretical scattering model and applied to experimental data. 
Furthermore, Hoeben et al. [5] used active microwave 
observations of the surface soil moisture content to estimate 
the root zone soil moisture profile by data assimilation.  

During the PacRim-II AirSAR campaign in Korea, the 
polarimetric SAR experiment was accompanied by detailed 
ground truth measurements, which include soil moisture 
contents, surface roughness characteristics, and surface 
cover mapping. The surface roughness characteristics 
investigated include root mean square (RMS) height and 
correlation length in bare surface test sites. The goal of our 
experiment is to correlate the analysed surface information 

with retrieved information from fully polarimetric AirSAR 
data in L- and P-band.  

In this paper, soil moisture content and surface roughness 
parameters are estimated from the AirSAR data observed at 
HH and VV polarization at L- and P-band. In this section, 
the theoretical background is illustrated. And this is applied 
to the AirSAR data over test sites in section Ⅱ and Ⅲ.  

A. Scattering Model as a Forward Model 

The backscatter coefficient is defined as a ratio of 
received signal intensity to transmitted signal intensity. The 
returned signal after being scattered against land surfaces 
depends on the wave parameters and surface parameters.  
The wave parameters consist of frequency, polarization state, 
and an incidence angle. Although this information is 
included in polarimetric SAR data set, the surface 
parameters are unknown variables, which are implicit in the 
backscatter coefficients. In case of bare surface, dielectric 
properties and surface roughness characteristics such as 
RMS height and correlation length belong to the surface 
parameters.  The relationships between backscatter 
coefficients and surface parameters have been developed. 
For example, theoretical models such as small perturbation 
model, physical optics model, and geometrical optics model 
and empirical models by Oh et al. [7] and Dubois et al. [3] 
have been developed and applied. Among them, the 
physically  driven scattering model, the integral equation 
method (IEM) model is known to have a relatively large 
domain of validity, whereas the other theoretical models are 
limited by the severe assumptions and empirical models 
have over-restrictions [10]. Therefore, the IEM model is 
selected as a forward model. The IEM model used in this 
study is a simplified version through approximations so as to 
simulate single scattering from randomly rough surfaces. A 
criteria is  
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where k  is the wave number, s is the surface RMS height, l is 

the surface correlation length, and rε  is a relative dielectric 
constant of the soil. For further knowledge about the IEM 
model and the model equations, refer to the literature by 
Fung [4].   



B. Conversion of Soil Moisture Content to Dielectric 
Constant 

The dielectric constant of a surface is one of variables in 
the IEM model. So, the values of volumetric moisture 
content need to be converted to dielectric constant. 
According to the semi-empirical model of Peplinski et al. [8], 
which is valid in the frequency range between 0.3 and 1.3 
GHz, the dielectric constant is a function of soil texture, 
wave frequency, soil temperature, and soil water content. 
The principle and the procedure for conversion of soil 
moisture content to dielectric constant are explained in 
Dobson et al. [2] and Peplinski et al. [8]. Figure 1 illustrates 
the changes of dielectric constant depending on soil water 
content variations at C-,  L-, and P-band in the case of the 
soil texture and temperature over our test sites.  

C. Methodologies for Inversion 

In the applications of remotely sensed data, it is important 
to solve inverse problem as well as to construct the forward 
relationships. Once a rigorous forward model, IEM model is 
established, inversion method determines the accuracy of 
retrieved surface parameters. The goal of the inversion is to 
extract surface RMS height s, surface correlation length l, 
and volumetric soil moisture content mv from four 
backscatter coefficients and an incidence angle, denoted by 

L
HHσ , L

VVσ , P
HHσ , P

VVσ , and ϕ . Two methodologies are 
reviewed in this subsection. One is the multi-dimensional 
regression technique developed by Dawson et al. [1] and the 
other is the inversion using artificial neural networks 
(ANNs) [4]. 
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Fig. 1. The curves of dielectric constant depending on volumetric soil 
moisture content variations at C-, L-, and P-band according to the semi-

empirical model of Dobson et al. and Peplinski et al.  

(a) Review of the Multi-Dimensional Regression Technique 

For the regression model, a q th input vector is composed 
of four backscatter coefficients and an incidence angle as 

q
Z
r
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And basis functions are organized as second order 
polynomial functions. Given the dimension 5 of the input 
vector qZ

r
 and the highest polynomial degree 2, total 21 

basis functions compose a set of basis function as 
q

Φ
r
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j th output ),(
~

qZj
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θ  is expressed as the summation for all 21 

members of the basis function which is evaluated for the q th 
input vector 

q
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where w ( j, i) is the weight connecting the i th basis function 

)(iqφ  to j th output ),(
~

qZj
r

θ . The desired output vector of q  

th pattern is qθ
r
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Assuming that total Nv training patterns are given, the error 
for j th output is  
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The total mean square error for the system is  
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The training patterns of Nv = 4,000 are used to compute the 
weights in this study. The best set of coefficient w (j, i) can 
be determined so that the mapping error of (3) is minimized. 
This is done by taking the partial derivative of the error with 
respect to each unknown coefficient and by equating the 
result to zero as follows. 
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from the above relations, the next results are 
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Matrix form of equation (6) is as follows. 3 linear matrixes 
of the size 21×21 can be derived as  
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(7) 
where Nv = 4,000 and j=1, 2, or 3 in this study. The results of 
the inversion are described in section Ⅲ. 

(b) Review of the Inversion Using ANNs  

Inversion is also attempted using ANNs, which is suitable 
for multidimensional retrieval from nonlinear scattering 
model. A 3-layer perceptron networks with one hidden layer 
is chosen. Each unit has a nonlinear sigmoid activation 
function. An input vector into the first layer contains five 
input signals, which are four backscatter coefficients and an 
incidence angle as )}5(),4(),3(),2(),1({ 11111 uuuuu  =  

{ }ϕσσσσ ,,,, P
VV

P
HH

L
VV

L
HH . In the second or third layer, the input 

signal )(2 iu  or )(3 iu  is the weighted linear summation of 
the outputs from the previous layer as 
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in the second layer, and  
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in the third layer because there are 45 units in a hidden layer. 
These are activated via the nonlinear sigmoide activation 
function, in the case of the second layer,   
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3 output signals  s, l , and mv  come out from the networks 
after being scaled linearly. The fully connected networks is 
trained by backpropagation learning algorithm [9], which 
learning in the network is the process to minimize the sum of 
the squared errors between the desired outputs called teacher 
signal and the computed network outputs as  
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While a training pattern is fed into the networks sequentially, 
the weights are updated as much as the difference of 
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where µ  is the learning rate. Specifically,  
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In this study, total 4,000 training patterns are generated 

from the IEM model and the ANNs are trained by total 
40,000 iterations, ten times of the training patterns. One 
example of the training errors during iterations is shown in 
Fig. 2 and the results of the ANNs inversion are presented 
and discussed in section Ⅲ. 

D. Spatial Analysis of the Distributed Data 

The statistics considering not only the quantities but also 
the sampling locations can be achieved by variogram 
modeling [12]. The variogram measures the degree of 
similarity of two samples taken the lag distance apart. When  
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Fig. 2. Scatter plot of training errors during the backpropagation learning 

(One scatter point represents an error per one training). 
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xv  is an attribute of a pixel at a point ix  and Ns is the 

number of pairs of data points located by the lag distance 
hh ∆± , the definition of semi-variogram is.  
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The semi-variograms are estimated for the AirSAR signal 
parameters and soil moisture content measured on ground in 
section Ⅲ.  

Ⅱ. DESCRIPTIONS OF DATA 

A. Test Sites 

Experimental sites are located at Jeju-si on Jeju island in 
Korea. Since the Jeju island originated from the eruption of 
basaltic volcano, the soil covering the island is characterized 
by high porosity which ranges from 48.7% to 60.2% and 
high permeability. The Soil is composed of sand of 15.9% 
and clay of 28.2%. And the volumetric density and the 
density of soil particle measure average 1.09 3/ cmg  and 

2.47 3/ cmg , respectively. On September 30, the average 
temperature was 23℃ . And it was cloudy and rained 
intermittently. However the surface soil was not saturated 
and runoff didn’t occur by rapid infiltration. Two flat bare 
surfaces named as site L1 (Fig. 3) and site L2 are selected 
for the estimation of soil moisture content from AirSAR data.    

Data observed by P-band (0.45GHz frequency, 67cm 
wavelength) and L-band (1.26GHz, 23cm) at HH 
(Horizontally received and Horizontally transmitted), HV 
(Horizontally received and Vertically transmitted), and VV 
(Vertically received and Vertically transmitted) polarizations 
were collected. Azimuth pixel spacing and range pixel 
spacing of the AirSAR data are 4.63m and 3.3m, 
respectively. Fig. 4 shows a set of AirSAR images around 
the L1 and L2 sites.   

 

 
Fig. 3. PacRim-II AirSAR experimental site L1 on Jeju island in Korea. 

 
Fig. 4. A set of AirSAR images around the test sites (the upper right 

trapezoid of blue color depicts site L1 and the lower left rectangle of blue 
color depicts site L2). 

B. Roughness Characteristics Measured on Ground 

The profiles of surface roughness were obtained each 
location by spraying over a scale paper attached to a tin plate 
fixed vertically on ground. The profiles were obtained at 
right angles when there is a linear directional trend. Two 
profiles at each site are measured; the east-west direction 
(EW) and the north-south direction (NS) in both L1 and L2 
sites. And then, two roughness statistics were estimated from 
the digitisation of surface heights. One is the standard 
deviation of the surface height and the other is the surface 
correlation length, which is estimated from the Gaussian 
autocorrelation function fitted in Fig. 5. The Gaussian 
autocorrelation function is defined as  
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where x is the displacement and  l is the correlation length 

such that 
e

l
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)( =ρ . Equation (17) can be converted to the 

roughness spectrum via Fourier transformation as 
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where k  is the wave number and ϕ  is an incidence angle. 
Equation (18) is inputted to the IEM model directly as a 
roughness parameter. Table 1 shows roughness statistics and 
normalized parameters with respect to the AirSAR wave 
numbers information. 
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Fig. 5. Measured and fitted surface autocorrelation functions  
on site L1 and L2. 

TABLE 1 
MEASURED ROUGHNESS PARAMETERS IN EXPERIMENTAL SITES 

Name of 
Sites Direction RMS  

Height (cm)
Correlation 
 Length (cm) ks (L) Ks (P) kl (L) kl (P) 

EW 1.0 4.2 0.27 0.094 1.1 0.39 
L1 

NS 0.49 2.0 0.13 0.046 0.55 0.19 
EW 1.3 11.8 0.35 0.12 3.22 1.11 

L2 
NS 0.94 4.8 0.26 0.088 1.3 0.45 

s is a surface root mean square height in cm, l is a surface autocorrelation length in cm, and k is the 
wave number, which result in  0.27 for L-band and 0.094 for P -band.  

B. Soil Moisture Content Measured on Ground 

Volumetric soil moisture content was measured at 
intervals of 30m with the use of Time Domain 
Reflectometry (TDR) Probe. The probe measures the water 
content of 0~12cm depth from land surfaces. The averages 
and standard deviations of soil moisture content are 37.3% 
and 3.7% in L1 site, respectively and 33.3% and 4.0% in L2 
site, respectively. The frequency distributions of measured 
soil moisture content are shown in Fig. 6. The relatively 
wide ranges of the soil water content seem to be owing to 
raindrop around the test date.  

Particularly inside a selected area, total 60 soil samples 
were collected with the regular interval of 4m in EW 
direction and the interval of 7m in NS direction. The 
gravimetric moisture contents were derived by comparing 
the weights of soil contained in a controlled volume after 
oven drying at 105°C  with those before oven drying. This 
detail measurements are used for the spatial analysis of the 
soil moisture distribution. This is compared with the spatial  
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Fig. 6. Frequency distributions of the soil moisture content measured  

at site L1 and L2. 
 

distribution of the AirSAR signal parameters in section Ⅲ. 

Ⅲ. RESULTS AND DISCUSSION 

A. Estimation of Backscatter Coefficients 

The backscatter coefficients by single scattering from 
randomly rough surfaces are calculated using the IEM model. 
The backscatters at L- and P-band at HH and VV 
polarizations are simulated with s, l, and mv  within the limits 
measured on ground. And then its mean and standard 
deviation are compared with those of the backscatter 
coefficients in the AirSAR data, of which the pixels except 
the bare soil area are masked. This statistics of calculated 
and observed backscatter coefficients are tabulated in Table 
2. The comparison shows the largest deviation at VV 
polarization of L-band, whereas the smallest deviation at HH 
of L-band. The biases influence the performance of 
inversions, because the inversion models trained with the 
synthetic data set are applied to the observed data set. And 
so, both synthetic and observed backscatter coefficients are 
normalized while training the inversion models and 
estimating the surface parameters with the use of the 
inversion models. The normalization of signal parameters 
reduced the number of pixels that fail to reasonable results in 
the regression model. 

As a preliminary step for inversion, sensitivities are 
examined. The scopes of surface parameters and the 
corresponding changes of backscatter coefficients are based 
on the ground truth information (Fig. 7). And the scope of an 
incidence angle in Fig. 7 is based on the AirSAR data taken  

TABLE 2 
STATISTICS OF BACKSCATTER COEFFICIENTS IN dB 
CALCULATED FROM THE IEM MODEL AND OBSERVED BY 
AIRSAR  

 L
HHσ  L

VVσ  P
HHσ  P

VVσ  

Mean  -21.93 -13.06 -28.76 -20.90 Calculation 
by IEM  SD 6.036 5.587 3.947 4.069 

Mean  -22.09 -19.02 -25.80 -24.79 AIRSAR data 
(L1 and L2) SD 3.846 3.607 4.349 4.136 

SD means the standard deviation. The region except for L1 and L2 sites is masked in the AirSAR 
data. 
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Fig. 7. Change of the backscatter coefficients responding surface parameters 

and an incidence angle. 
 
in test sites. The backscatter coefficients are less sensitive to 
soil moisture content than to surface roughness parameters. 
This makes the estimation of soil water content difficult in 
two inversion models, which is discussed in the next 
subsection.  

B. Estimation of Surface Parameters 

4000 data sets are generated synthetically from the IEM 
model for the purpose of training two inversion models. 
Each set contains the three surface parameters s , l , and vm , 

four backscatter coefficients L
HHσ , L

VVσ , P
HHσ , and P

VVσ , and 
an incidence angle ϕ . Table 3 shows the lower and upper 
limits of the measured and synthetic surface parameters. The 
limits of synthetic data follow the criteria of equation (1), the 
condition for the application to the IEM model, in addition 
to cover the limits of measured surface parameters. The 
synthetic data sets are used to train the multi-dimensional 
regression model and the ANNs inversion model as 
mentioned in section Ⅰ. The process for a training error of 
the surface correlation length to converge has been shown 
already in Fig. 2. That shows the best convergence. Namely, 
average RMS error during last 100 iterations is 0.080cm for l, 
whereas total error of equation (11) is 0.11. This observation 
is consistent with the best sensitivity of l in the previous 
subsection. After the training, the synthetic backscatter 
coefficients and incidence angle are re-inputted to the trained 
inversion models. The estimated outputs versus desired 
surface parameters are shown in Fig. 8.  This cross-

validation confirms the propriety of the inversion models. 
The RMS errors of the estimated outputs are summarized in 
Table 4. Poorer results in the ANNs inversion model than in 
the regression model requires further investigation about the 
method.  

Two inversion models are also applied to the AirSAR 
data. The estimated surface parameters are shown in Table 6. 
The average RMS errors of soil moisture content are 3.1% in 
the regression model and 4.2% in the ANNs inversion model.  

TABLE 3 
LOWER AND UPPER LIMITS OF SURFACE PARAMETERS 

 s  (cm) l  (cm) m v  (%) 
Ground truth [0.49, 1.30] [2.0, 11.8] [25.0, 45.0] 
Synthetic data [0.1, 3.9] [0.2, 15.0] [21, 56] 

TABLE 4 
THE ROOT MEAN SQUARE ERRORS OF SURFACE PARAMETERS 
ESTIMATED FROM SYNTHETIC DATA  

 s  (cm) l  (cm) m v  (%) 
Regression 0.28 0.52 3.9 

ANNs inversion 0.45 0.90 5.4 
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Fig. 8. Cross validation of two inversion models (Left: Multi-dimensional 
regression technique, Right: Inversion using artificial neural network).   



A modified input vector is investigated to improve the 
soil moisture estimation by the ANNs inversion. For the 
purpose of searching signal parameters that have similar 
spatial structure with measured soil moisture, semi -
variograms are estimated for soil moisture and signal 
parameters. The results are shown in Fig. 9 and 10. The 
scatter plots in Fig. 9 and 10 represent the experimental 
semi -variogram defined in equation (16). A solid line and a 
dotted line in Fig. 9 are a fitted exponential and Gaussian 
semi -variogram model, respectively. The exponential model 
of  

219.1
35.36

3
exp102.12)( +











 −−=γ h

h            (19) 

 
fits better than Gaussian. According to (19), the range value 
of measured soil moisture content is 36.35m. This means 
that the two variables at farther distance than 36.35m are 
independent. The signal parameters investigated include 

L
HHσ , L

VVσ , L
HVσ , P

HHσ , P
VVσ , P

HVσ , L
HH

L
VV

σ
σ

, and P
HH

P
VV

σ
σ

. Fig. 10 

shows the experimental semi-variogram of co-polarization 

backscatter ratio 
hh

vv

σ
σ

 at L- and P-band, which is sensitive 

to soil moisture according to Kim and van Zyl [6]. The range 
values of each signal parameter in Table 5 are obtained by 
fitting with the exponential semi-variogram model. It is 
found that the range value of co-polarization at site L1 
approaches to that of soil moisture. Therefore the co-
polarization ratios at L- and P- band are used for the 

elements of input vector, that is, 








ϕσ
σ
σσ

σ
σ

,,,, P
VVP

HH

P
VVL

VVL
HH

L
VV  

instead of },,,,{ ϕσσσσ P
VV

P
HH

L
VV

L
HH . This attempt that denoted 

by the ANNs2 in Table 6, is proved to improve soil moisture 
content estimation; Average RMS error is reduced to 2.9% 
and it is consistent with the ground truth information that 
soil water content is higher in L1 site than in L2. The mean 
values of extracted and measured data are summarized in 
Table 6.  
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Fig. 9. Experimental semi-variogram of the soil moisture distribution 

measured on ground. 
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Fig. 10. Experimental semi-variograms of the co-polarization ratio  

distributions at L-and P- band (left: L1, right: L2). 

TABLE 5 
THE RANGE VALUES OF SIGNAL PARAMETERS IN m AT SITE L1 
AND L2  

 L
HHσ  L

VVσ  L
HVσ  P

HHσ  P
VVσ  P

HVσ  L
HH

L
VV

σ
σ

 P
HH

P
VV

σ
σ

 

L1 61.0 39.0 73.4 77.0 52.3 107 38.9 21.0 
L2 24.0 40.0 67.6 181 39.0 694 116 47.3 

TABLE 6 
SURFACE PARAMETERS ESTIMATED FROM THE AIRSAR DATA 
AND MEASURED ON GROUND 

Site L1 Site L2  
s (cm) l (cm) m v (%) s (cm) l (cm) m v (%) 

Regression 1.45 6.86 38.4 1.40 8.21 38.4 
ANNs  1.73 7.97 35.4 1.77 7.00 39.8 

ANNs2 1.39 8.43 40.3 2.31 6.70 36.0 
Ground truth 0.75 3.10 37.3 1.12 8.30 33.3 
The ANNs means the ANNs inversion model using original input vectors, whereas the ANNs2 means 
the ANNs inversion model using the modified input vectors as described in section Ⅲ. 

Ⅳ. SUMMARY 

Estimation of bare surface soil moisture content is 
investigated using multi-frequency and multi-polarization 
AirSAR data set. During the PacRim-II AirSAR experiment 
in Korea, the AirSAR data and ground truth data were 
collected. Two existing inversion algorithms are applied to 
the AirSAR data set taken at the bare soil area in Jeju. The 
algorithms were  developed to retrieve surface dielectric and 
roughness parameters simultaneously. One is the multi-
dimensional regression model [1] and the other is the 
inversion using artificial neural networks [4]. The IEM 
model is used to calculate the backscatter coefficients with 
the surface parameters measured on ground and to generate 
synthetic data set in order to train the two inversion models. 
The regression model is proved to perform better than the 
ANNs inversion model when applied to the AirSAR data as 
well as the synthetic data. However, the ANNs inversion 
model can be modified to improve the soil moisture 
inversion. For example, the use of co-polarization ratio as 
elements of input vector improves the soil moisture 
estimation qualitatively and quantitatively. Still further 



investigation should be continued for the ANNs inversion 
model.   

Both in situ and AirSAR data are taken on the day, when 
it was cloudy and rained intermittently. Therefore this soil 
moisture estimation example shows the case of almost 
saturated surface. In this paper, only the average of surface 
parameters has been validated. But, the distributed 
estimation would be valuable both for the utilization in 
agriculture and assimilation to hydrological model [11].  
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