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Background
Rice is the most important irrigated crop in SE Asia, but it is hard to ascertain exact areas
because:
∑ There is no distinct crop season in the tropics. Where water is available, rice can grow

all year round, and due to labour and other constraints in the sequence of agricultural
operations, it is normal to find that there is a lot of spatial variability at medium and
local scales in crop growth stages.

∑ Even where crop seasons are more pronounced (North Vietnam, central Luzon, and in
the Yangtze River Basin (PRC), there can be a long periods of planting and harvest.
In the Red River Delta, rice is transplanted over a two-month window. If there is a
need for replanting (due to frost in Spring or flooding in summer), the time between
first and last planting can be as much as 90 days, or the entire duration of a short
season variety.

There is a lack of planning and coordination between farmers, irrigation suppliers and
agricultural services in rice planting. This results in considerable local-scale and service
area variability in planting patterns and coverage, and uncertain stagger and spread of the
planting window in seasonal areas.

The improvement of irrigation system performance includes the timely delivery of the
correct quantities of water to the right place to satisfy crop water requirements
(evapotranspiration and additionally soil saturation for rice). Computer simulation models
can be applied to compute the amount of evapotranspiration, and accumulate water
deliveries through the irrigation network to determine releases at the head of the system –
for example a dam or a pumping station (FAO, 1996). Correct quantification of water
requirements is dependent on knowledge of the crop area, crop type and growth stage.

Growth stage may be inferred from date of planting and crop characteristics. In practice,
it is rare that either is known with any accuracy. In tropical situations, such as southern
Vietnam and Indonesia, rice may be grown continuously with as many as 7 short duration
crops in two years. In such situations, it is common to find rice at all growth stages
simultaneously in any given area. In Dutch colonial Indonesia, crop areas were surveyed
every 10 days, using cadastral maps, but such practices are no longer economically or
logistically possible.

Remote sensing offers good opportunities for crop identification and classification, and
has become a mature and useful technology using visual band /NIR/TIR imagery.
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However, in the tropics and sub-tropics, cloud cover prevents the timely acquisition of
such imagery, and in Hanoi (N. Vietnam) there are on average less than 60 cloud free
days per year.

Single band Synthetic Aperture Radar sensors (ERS-1 and 2, Radarsat) have been used to
map rice in Indonesia and in the Mekong region (Radarsat International, pers. comm.
2000), but require multi-temporal image analysis, based on threshold changes in
backscatter (Le Toan, 1997) to differentiate rice from other crops and from ponds, fallow
and bare land etc. Classification accuracy is not good, especially as prior knowledge of
planting date is required for multi-temporal analysis, and is in fact rarely known as
previously explained.

Single band, single polarization data offers very limited possibilities for crop
discrimination at one time of acquisition, but there are much greater possibilities with
multi-polar, multi-band sensors such as AIRSAR.

The ultimate objective of the research is to develop the simplest possible robust crop
identification scheme that distinguishes rice by its growth stage in order to provide real-
time rice maps for use in irrigation system management. The short term objective is to
use the power and sophistication of POLSAR to test mapping schemes using different
combinations of band and polarization, and derived data such as texture, band ratios,
phase images and bounce images.

The investigation of SAR for rice mapping was developed as part of an ACIAR2 funded
project “System wide water management in public irrigation systems in Vietnam”.
Ground truth data were due to be collected at the Cu Chi irrigation system, 40 km NW of
Saigon, in August 2000, but a last minute revision by security agencies in Vietnam saw
the project site moved to Central Luzon in the Philippines.

The literature
Briscoe and Brown (1998) observe that, to date, there has been limited experience with
polarimetric radar in agricultural applications, and that multi-waveband research results
are also limited, compared to work done with single wavebands. They also note that
comparatively little work has been done on tropical agriculture.

A large amount of the foundation work in radar remote sensing, beginning in the late
1970s was done by Ulaby and various collaborators in the US, and by Hoekman and
Boumann in the Netherlands, using ground-based scatterometers and airborne
instruments. Ulaby has continued to be at the forefront of research in SAR as polarimetric
radars such as AirSAR have become available. The Shuttle Imaging Radar Mission (SIR-
C) allowed polarimetric data to be collected from space in X, C and L band – for example
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Soares’ data was obtained from SIR-C. Single waveband, single polarisation radars on
Radarsat (Chh), ERS-1 and 2 (Cvv) and JERS-1 (Lhh) have widened the availability of data
for agricultural applications. However, the inherent limitations of the technology have
meant that the main avenues for adequate crop classification lie in 1) multi-temporal
analysis and/or 2) combination with optical and infrared remote sensed data.

Much early work was done using K- and X-band radars, which are more sensitive to the
surface roughness of crops, but many of the airborne instruments had comparatively
coarse resolution (scale = 1:400,000).  Bush and Ulaby (1978) found that Xvv (_=2cm)
provided the best discrimination of corn, soybean, wheat, milo and alfalfa and achieved a
90% classification accuracy.  Haralick (1970) found that HH and HV images enhanced
the identification of sugar beet, corn, grain sorghum, wheat and alfalfa at different
cropping densities. Briscoe and Protz (1980) achieved a 90% correct classification of
corn using simultaneous X and L band radar in one pass.

Much of the early work also investigated variations in response with incidence angle,
leading to the development of the cloud models and their successors (Attema and Ulaby,
1978).

Airborne X-band radar was used to provide complete land-use and land cover maps for
the whole of Nigeria (Trevett, 1986).  McDonald and Indradi (1991) were able to classify
mixed forest, old and new rubber, oil palm, coconut, cassava, rice and maize using Xhh

with a 6X6m pixel resolution and noted that stereoscopic SAR imagery could generate
land-use maps five times faster than form 1:40,000 aerial photography.

C-band was found to be better at separating lush crops such as Soya bean from corn
(Mehta, 1983). Le Toan (1989) recommended the use of polarisation ratio (hh/vv) to
identify grain crops as the vertical polarisation is attenuated more strongly than the
horizontal, which penetrates the canopy and responds to soil moisture. Briscoe (1992)
found that HV returns considerably aided crop discrimination in all wavebands.

As noted earlier, there has been conflicting evidence in literature, mainly concerning
cereals.  In multi-temporal analysis, changes in characteristic signature are used to
distinguish crop types: for example. Broad-leaved crops, such as sugar beet and potato
attain full vegetative cover early and the backscatter reaches a plateau and does not
change over the remainder of the season (Bouman, 1999), but that of wheat decreases as
vegetative growth occurs. In contrast the backscatter response of rice appears to increase
with vegetative growth, and Le Toan (1997) showed that both hh and vv backscatter
increased at early growth stages, but that as full canopy cover is developed the proportion
of vv decreases whilst hh increases. Polarisation ratio was again found to be a good
discriminant of growth stage.

Rosenqvist (1998) showed a strong correlation between Lhh backscatter (JERS-1) with
plant growth in paddy rice. He observed strong Bragg scattering from fields in Japan,
where rows were perpendicular to the incident beam and inter-row and within-row plant
spacing was precise and typically 30cm. By contrast Durden (1995) observed little



attenuation of Lvv or Lhh in rice.  Durden (1995) and Le Toan (1997) both observed that
direct volume scattering from Cvv was minimal in rice, and so the reflection of Cvv is
largely due to water surface, canopy interaction, unlike in the case of wheat and barley
(Bouman, 1999).

Multitemporal analysis can be improved if the start and end of crop seasons are known
(Le Toan, 1989 et seq.). Markers for the start of a rice season are the transition from
ponding to transplanting, and similar markers can be found in pastures, which are cut for
hay.  Foody (1989) showed that classification accuracy rose from 55% at the first pass to
90% after four passes. Two-date polarimetric datasets (summer and winter) proved better
at discriminating forest types in northern Canada (Ranson and Sun, 1993) at 81.1%
compared to 66% for the summer data alone.

A change index is usually used to evaluate differences in crop condition between
successive passes of the same sensor (Ribbes and Le Toan, 1999). Liew at al (1998)
define a change class as follows:
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where:
DN1 = pixel digital number of the first of two consecutive pairs of images
DN2 = pixel digital number of the second image in a pair.

In a study of farming systems in the Mekong Delta, pixels were classified as constant if
change was less than ±3dB. 9 thematic classes were merged from 243 unique change
classes over 7 satellite passes. Considerable ambiguity exists in the resulting
classifications over the period May to December.

Verhoeven et al. (2000) notes that a multi-temporal filter for speckle is required with
consecutive images in order to preserve image precision. In trying to apply Le Toan’s
3dB change detection threshold, they observe that it works well for large, flat,
homogenous areas, where rice is planted at the same growth stage, but that this is not the
case in most SE Asian countries. They are attempting to address the crop seasonality and
number of crops per year by adding a data bas of local statistics, high-resolution aerial
photography and additional conventional remote sensing data, combined through the use
of GIS.

In preparation for the PACRIM AirSAR mission, a matrix of expected radar responses of
different crop and ground conditions was developed for all combinations of waveband
and polarization, based on a simple understanding of radar-ground-vegetation interactions
and some simple modelling using 1 and 2-layer cloud models (in Fortran and Excel). This
indicates that most expected ground conditions could be determined with combinations of
Cvv, Chh, Lvv, Chv and Lhh signals.



Ground-truth Fieldwork
Two sites were identified in Districts 1 and 4 of the Upper Pampanga Region Integrated
Irrigation System (UPRIIS). Rice planting in the Philippines historically follows a stricter
seasonal pattern than in neighbouring countries, but District 4 had been experimenting
with further intensification of rice cropping, and significant areas of planting were
scheduled for the agreed PACRIM flight dates in September 2000.

Figure 1 a) Location map for ground truth work on rice mapping in the Philippines
b) detail of the survey area in District 4 at Gapan (vector polygons of
survey area shown).
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A reconnaissance survey in July revealed that the full range of rice growth stages could
be expected to be identified in District 1 (known here as Santo Domingo) and District 4
(known here as Gapan) at the time of data acquisition. On September 25, there were
predominantly mid-late growth stages and harvested fields in Santo Domingo and
predominantly land preparation, transplanting, early and maturing growth stages in
Gapan. The two sample sites are approximately 40km apart.

Field survey was conducted by 45 field workers, over three days from 25-27 September,
2000. Surveyors in Santo Domingo were hired from the National Irrigation
Administration (NIA) field staff and those in Gapan were sourced from NIA field and
operations staff and from young graduates. A total of 450 ha covering more than 400
plots were surveyed over the three days at the two sites.

Field sites were identified over the previous three weeks, using a hand-held GPS, to
locate plots and blocks at appropriate growth stages. 1:50:000 scale topo-maps were



scanned and incorporated into a GIS, to provide a base layer. A complete set of aerial
photographs at 1:38000 scale were purchased from the National Land Administration in
Manila, and were used in conjunction with cadastral maps sourced from NIA, and the
local administrations, to mark out and identify plot owners.

Two trainings were held for field staff, to confirm accurate recognition of crop growth
stage and other important crop parameters. Survey indexes were used to identify cadastral
plots by owner name and number. In Santo Domingo, farmers typically own a long
rectangular strip, known as a “Banoz”, 1 to 2 plots wide, up to more than 20 plots long. In
Gapan, the plot arrangement is more variable. Where crop growth stage or condition was
not homogenous on survey day, the field measured plot boundaries and annotated hand-
drawn maps on the survey forms.

The following typical ground conditions were sampled:
1) Bare soil – dry
2) Ploughed land
3) Flooded land, prior to transplanting or direct seeding.
4) Newly transplanted fields
5) Nursery plots
6) Rice at emergence
7) Rice at tillering
8) Rice at head formation
9) Rice at maturity
10) Newly harvested rice (tall stubble)
11) Short stubble
12) Bare soil after burning stubble.

In practice, crop growth stages were further differentiated at three stages of vegetative
growth prior to heading and also at flowering and two grain-fill stages (milky grain and
dough grain). Fallow or weed covered paddocks were also sampled, plus a few non-rice
crops, where they could be found.



Figure 2 Rice growth stages



A number of soil and crop characteristics were also collected including:

1) Soil condition – bare, ploughed, levelled, ponded, cropped, stubble, burnt, and fallow.
∑ Sample soil moisture content using Time Domain Reflectometry
∑ Measurement of soil surface roughness, using a profile meter and a white board,

with registration points. Photographs were taken of soil surface profile against the
white board.

2) Crop information for rice:
∑ Variety
∑ Transplanted or direct sown (T/DS)
∑ If transplanted – row orientation in degrees using a compass.
∑ Crop growth stage
∑ Number of plants per square meter: plant spacing if transplanted
∑ Number of tillers per plant based on sample in 1m2 quadrats.
∑ Average water depth
∑ Sample total biomass per square meter for some plots using a modified pasture

plate meter. Crop cuts were not possible.
3) Field features

∑ Proximity to large banks, roads, channels
∑ Field bank height

During crop growth stage sampling, sample sets of field were sampled for biomass, using
a modified pasture plate meter. Approximately fifteen samples were taken per field to get
an average value for the location. The pasture plate meter3 readings should be calibrated
against crop cut data (Earle and McGovern, 1979) to provide estimates of biomass. Since
crop cuts have not been done, this data gives a measure of relative biomass only.

Since the soil profile meters got detained in customs, soil roughness estimates were made
in the same way as crop roughness measurements. A large white board, with at least 8
registration points was placed on the soil surface, and photographs were taken at a
shallow angle to present an outline that could subsequently be digitized. Long-scale
macro-roughness was not measured.

Soil moisture data was collected at a test site one day before the overflight, and 12 “dry”
blocks were sampled on the flight day in Santo Domingo only. One third of these
locations had soil moisture conditions close to saturation. The location of the soil
moisture samples using TDR (surface 20 cm only) was recorded using GPS. Typically
10-15 samples were taken in one plot.
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Field data preparation

All field data was transcribed to spreadsheet, and tables of crop and ground conditions
were prepared so that they could be exported to GIS. The GIS is based on scanned topo-
maps, projected in UTM (Clarke 1866 spheroid (Luzon datum). All GPS data for
registration points (cross roads and junctions, channel crossings, and major irrigation
structures) were imported and corrected to the Luzon datum. We observe a remarkable
correspondence between map and GPS position, with generally less than 5m error in
location, which is surprising for 1:50,000 scale maps, where 1 mm error in digitising
translates to 50 m in the real world.

Diapositive airphotos were also obtained in the Manila from NAMRIA, and these were
scanned at high resolution (9600 dpi) to obtain maximum resolution, since the scale was
coarser than ideal for identifying field boundaries. Nevertheless, each individual plot
boundary is visible in the GIS, providing TIFF files are used rather than compressed
formats. The airphotos were registered to the base-maps and then mosaicked. Resampling
in mosaicking reduces image precision and individual air photos were used to locate field
plots.

Figure 3 Schematic summary of ground truth data preparation for image
processing
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The cadastral maps are indexed by name, plot number, and area with plot numbers used
as indexes for field data collection. The cadastral maps are often not topologically
accurate, and require some interpolation when digitizing. In an ideal world, each field
boundary would have been determined using DGPS, since GPS location accuracy is
insufficient for mapping plot boundaries at this resolution. However, most plots are
unambiguous especially when they form contiguous blocks at one growth stage. Sketch
maps made at sampling time also improve plot identification. There is some uncertainty
when sample blocks contain a number of growth stages, particularly when these are
patchy. It was observed that plot identification could be aided by reference to the AirSAR
images, but this defeats the point of ground truthing and the temptation was overcome!

There is an interesting conundrum here in subsequent ground truth accuracy and tests of
classification accuracy. This will be explored later, if there are any obvious errors in the
ground truth data set, either by correcting training data to the AirSAR image, or by
discarding them.



All ground truth polygon files are joined to their respective field data tables, and then
sorted by ground truth class. Initially these classes are based on crop growth stage alone.
There are many possible enhancements, the most obvious being the distinction between
crop growth stages with ponded or dry soil conditions under the canopy. This is most
likely to make a difference to the observed backscatter, since the proportion of double
bounce scattering in C and L band should increase considerably if reflected off a water
surface below the crop canopy.

Each class is exported as one shapefile, for inclusion in ENVI and conversion to raster
format (ROI – region of interest) for image classification. Each class is divided in two to
provide training and test areas. This is a time consuming process.

Soil and crop surface roughness was analysed by digitizing the photographs taken of the
crop or soil surface set against the white boards used in the field. At least four registration
points have to be visible in the photograph to obtain good results. Digitising soil surface
roughness is straightforward, but a number of trials were required for the crop canopy
cover. The initial calculations of RMS roughness height proved to be very sensitive to the
number of digitizing points taken, and it was found that a minimum of some 150 points in
a 2m segment is required for adequate comparison.

One pasture plate meter was left in the Philippines with the International Rice Research
Institute in Los Banos, in the hope of being able to obtain some crop cut data that would
correspond to readings taken at different growth stages, using similar varieties.

Image Processing
All images are analysed in dB form, with correction to ground range. Preservation of
radiometric characteristics was checked for pixels at individual locations and for ROIs
covering the same target area in slant range and ground range images, prior to and also
after image registration. Differences in average backscatter coefficient for all wavebands
was found to be less than 0.17 dB for selected regions, which is very encouraging.
Individual values at one location varied by as much as 1 dB due to some pixel shift.

The overall image analysis pathway is summarized in Figure 4, although in practice, this
has turned out to require more steps and detail in the intermediate stages.

Figure 4 Initial image processing strategy to determine classification accuracy.



Synthetic Aperture Radar Data Processing - Rice Classification

Decompress Stokes Matrix data , C, L and P bands
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Principle Component Analysis (PCA) was performed separately for Gapan and Santo
Domingo images, using sigma values of backscatter coefficient in the slant range. We
observe different results reflecting predominantly early and late growth stages
respectively (see Table 1), where Cvv and Chv are interchanged. Cvv is better correlated to
early vegetative stages, whereas Chv represents increased volumetric scattering from the
crop canopy after grain formation . ENVI calculates Chh as the fifth significant principal
component, but this should not be possible, since it is the first PC.

Gapan Santo Domingo
Principal
Component

Band and
polarisation

Eigen Value Band and
polarisation

Eigen Value

1 Chh 0.623 Chh 0.594
2 Cvv 0.569 Chv 0.666
3 LTP 0.558 LTP 0.305
4 Lvv 0.499 Lvv 0.568
5 Chv 0.349 Chh 0.462
6 Lhh 0.743 Lhh 0.737
7 Pvv 0.791 -

Table 1 Principle components of AirSAR images for Gapan and Santo Domingo

More than 60% of the response is accounted for by the first two PCs. Pvv may be
significant in Gapan due to greater amounts of tree cover and settlement than in Santo
Domingo which is more open.



It should be possible to calculate PCs for targets in both images, but both images need to
be co-registered first. It is desirable to look at the relative importance of other measures,
such as phase difference, bounce classification, pedestal height and band ratio. Pedestal
heights for C, L and P band have the same value scale as sigma 0 backscatter coefficient
and can therefore be compared and indeed are higher ranked that waveband
combinations. However, it is not clear what this information means in practice.

All subsequent image processing was conducted on the Gapan data set only, but will be
repeated for Santo Domingo and for a combined data set in the future.

In order to test image classification using polarimetric data only, the images were
converted to ground range and registered and processed as follows:

1. Image registration
a. subset polarimetric image to aerial photographs of survey area (one only

for Gapan), using cubic convolution, with third degree polynomial nearest
neighbour resampling.

b. image to map registration is preferred to be able to select pixel size similar
to original image (3.93 by 3.93 m pixels). Image to image registration in
ENVI allows no control of pixel size and results in enormous and
unwieldy images.

2. Frost filtering (3x3) prior to conventional classification.
3. Classification measures

a. Importation of shapefile ground truth classes.
b. Conversion of shapefile classes to two sets of ROIs – training and test

locations.
c. Supervised classification

 i. Maximum Likelihood  and  ……………compare
d. Analysis of classification accuracy using confusion matrix.

In practice, a secondary image registration is required, as image to map registration
resulted in local distortions over certain parts of the ground truth areas, by up to 20m. The
re-registration was done on the previously registered image, by refining ground control
points taken from the vector layer of all ground truth data. Second-order polynomial,
nearest neighbour resampling with cubic convolution was used to minimize further
warping.

Textural analysis is being undertaken using unfiltered ground-range images, using the
technique outlined by Soares et al (1998), and using IDL code kindly provided by Soares
and Renno (2001).

RESULTS



Soil moisture in sampled plots in Santo Domingo was high across a range of growth
stages, even during maturity and harvest, as shown in Table 2. Volumetric moisture
contents of 50% or more are close to saturation, even though there is no water ponded on
the surface. From observation, this would be typically the case at Gapan also. Signal
attenuation should therefore be high on high moisture content but unponded soils, and
immediately ponding occurs, the return signal strength should increase due to double
bounce scattering in both C-band at early growth stages, L band in mid and late growth
stages, and P-Band at late growth stages.

LDMK Plot # IA GS PPM cm VMC av
%

1 654 VEGA COSTRA ET2 28 45.25
2 221 VEGA COSTRA HH-FL 83 47.50
3 211 MAMBARAO FL 44 34.15
4 42 MAMBARAO FL 54 38.25
5 11 MAMBARAO FL 55 56.40
6 355 VEGA COSTRA MG 70 52.20
7 411 NALBUGAN F2-1 MG 70 54.30
8 232 VEGA COSTRA MG-DG 45 57.10
9 414 MAMBARAO DG 67 27.65
10 533 MAMBARAO DG 87 52.65
11 413 VEGA COSTRA HVST 91 54.20

Table 2  Summary of TDR measured average plot soil moisture content at Santo
Domingo.

RMS roughness of the crop appears to increase steadily with growth stage, as shown in
Figure 5 below. In this areas rice ears are removed at the top of the stem, rather than the
stem being cut close to the ground. This leaves much upright, lignified vegetation in the
field immediately after harvest, which is eventually burnt off or grazed. The points shown
on the graph have been derived from 32 plots in Gapan and represent average times to the
following ground conditions 1) Ponded, ploughed land, prepared for transplanting or
sowing (-20); 2) Mid-vegetative stage, about PI; 3) Flowering; 4) Harvest; 5) Standing
stubble after harvest. The increasing brightness of C –band reflection at later growth
stages is clearly partly attributable to this.

Figure 5 Relationship between RMS surface roughness and crop development, for
field plots in Gapan.
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Class average values of dB backscatter have been calculated for the training data set (16
of 17 classes) for Gapan and those for the 7 principal components identified earlier have
been plotted in Figure 6.

The crop season starts at transplanting, which is conventionally given the day value zero.
For reference, the backscatters for Fishponds are given on the left of the plot and those
for bare dry soil after harvest and burning, on the right. Backscatter for fishponds can be
differentiated from ponded paddies by the extent of double bounce returns and from the
pond embankments and the resulting higher power return. There is no data for the very
early vegetative growth stages

Backscatter can be seen to increase with vegetative development, in both L and P bands,
although a short-term dip of 4 dB is apparent at flowering. The ratios of Chh and Chv to
Cvv should give differentiation of later growth stages. The sharp but temporary peak at
heading may be due to a large number of vertical stems acting as small antennae,
increasing the proportion of double bounce returns before the florets spread. This is
characteristic even of the P-band, which is surprising.

Observing the data indicates that as the rice crop develops, its radiometric properties
increasingly resemble that of a fishpond, and indeed this is the classification that is seen
with simple minimum distance methods, probably with an insufficiently well-specified
set of parameters.

Figure 7 Backscatter returns for the main principle component wavebands – Gapan
ground truth training dataset.
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The dip in C-band and L-band return signal at flowering is harder to explain, and effects
of canopy closure do not convincingly explain the attenuation, where it is conceivable
that there is more direct reflection from the canopy surface, with a slightly higher
dielectric and “apparently” smoother surface.



Supervised Classification
The primary objective of this initial work was to evaluate the classification accuracy of
POLSAR, using the ground truth data divided into training and test data sets. At the time
of writing, this objective has not been met.

The preceding discussion indicates good possibilities for acceptable classification and
indeed, supervised classification based on manually entered ROIs for known vegetation
classes, gave visually impressive results.

At the moment, there appear to be statistical problems with some of the field data, with
the result that it has not been possible to calculate a full set of Class statistics. One set of
ROIs causes the ENVI software to expire, but even when left out of the set, class
separability cannot be properly calculated and Maximum Likelihood Classification is not
possible. Classification by Mahalanobis Distance results in a set of rule images that,
when converted to a three-band rule image, results in something that looks acceptable, as
shown in Figure 8. However, the classification image itself is monotone and cannot be
used to determine a confusion matrix using the test ROIs.

Figure 8 Rule image for a subset of Gapan, using the Mahalanobis distance
classifier.
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training and test sets need to be adjusted as their boundaries clearly do not match what is
seen in the radar image. Such ambiguous polygons can be eliminated or corrected, but
this is better done after establishing a baseline with the data as collected. There are many
class permutations beyond simply the crop growth stage, such as the presence or absence
of ponded water, crop row orientation at young growth stages (affecting surface
roughness and Bragg Scattering). Further understanding and investigation is required to
complete a formal classification analysis and then refine it.
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