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Abstract

In this paper we re-examine the entropy alpha approach to radar polarimetry and show how the
basic method may be augmented by the addition of two new polarizing parameters, the
propagation and helicity phase angles and three depolarizing parameters, the anisotropy A and
two depolarizing eigenvector angles. We apply the technique to Polarimetric AIRSAR data for
land, ice and forestry applications.

1. Introduction

In this paper we describe a method for unsupervised classification of polarimetric SAR imagery
based on an eigenvector analysis of the coherency matrix. In previous publications [1,2,3], the
entropy/alpha plane was introduced as a convenient means of displaying these eigenvector
properties. It was further shown how, by using simple physical models, up to 8 important classes
of terrain cover can be classified using this technique [1].

This method has also recently been used as a starting condition for a more sophisticated
iterative classification method employing multi-variate Wishart statistics [5,6,7]. These studies
have all highlighted the importance of optimising the number and diversity of classes to be used
as input to the classifier. For this reason it is of interest to reconsider the details of the
method and assess any possible extensions into new class types. Given the widespread availability
of high quality calibrated POLSAR data and the imminent launch of space based polarimetric
imaging radars, it is of timely interest to consider such an extension.

To do this, we first up-date the classification boundaries using recent developments in radar
polarimetry [3,8,9] and interferometry [10,11,12] and then highlight the potential of using several
new parameters for further refinements in the classification procedure. We concentrate on two



new sets of polarimetric parameters, namely those arising from a polarising/depolarising
decomposition of the coherency matrix [13]. The former are derived from the maximum
eigenvector and offer two invariant phase angles, which so far have not been employed for
classification. The latter arise from the depolarising subspace alone. One of these, the
scattering anisotropy A, has already been suggested as a new feature to distinguish depolarising
mechanisms in surface and volume scattering [3,5]. For example, A can be used to distinguish
rough from smooth surfaces and to classify different types of vegetation cover. However, the
depolarization subspace also offers two new parameters, which so far have not been fully
exploited.

We first derive the key features of this classification method and then present some examples
of its application to POLSAR data for land, sea ice and forestry applications.

2. Navigating the Entropy/Alpha Plane

The basic observable in radar polarimetry is the 2 x 2 complex scattering matrix [S]. For
backscatter problems, the reciprocity theorem forces HV=VH and so this matrix is symmetric.
When such SLC data is available then the coherency matrix can be directly derived by
vectorising [S] into k using the Pauli spin matrices and then averaging products of the complex
elements to generate a 3 x 3 positive semi-definite Hermitian matrix [T], as shown in equation 1.

However, often the user is provided not with SLC data but with multi-look Stokes matrix data
[M]. It is important to realise that this format is entirely equivalent to the coherency matrix,
although some care is required in transforming between matrices. The problem arises that,
because of coding or measurement errors, small negative eigenvalues are obtained in converting
from [M] to [T]. To cope with this case, matrix-filtering techniques have been developed [4].

In equation 1 we also show for reference the explicit mapping between the real symmetric
Stokes matrix [M] and the coherency matrix [T]. Using this relationship [T] can be easily derived
from Stokes matrix format data such as provided from the AIRSAR system.
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If we write [T] in the explicit form shown in equation 1 then the 3 real non-negative eigenvalues
of [T] can then be derived analytically asK
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where Tr(T) = (a+b+c) and the secondary parameters S2 and S 3 can be calculated from the
following relationships
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The eigenvectors of [T] can also be calculated as the columns of a 3 x 3 matrix [U3] = [e1 e2 e3]
where

e

c

z

c z z z z

b z z z z
c z z z

b z z z
i

i

p

i p p p

i p p p p

i p p

i p p p

e fhg f gfiff gfWf
j
k
lllllll

m
n
ooooooo

p p pp p2

1 2 3 3

2 1 3 2

1 2 3

2 1 3

1

(( ) )

(( ) )
( )

( )
                                         - 4)

The coherency matrix [T] also has an associated Hermitian form qi, q  0, which can be used to
generate the level of scattered power into mechanism wi   as [14]

q w T wi
Trtsvu*

                                                                        - 5)

The eigenvalues of [T] therefore have direct physical significance in terms of the components of
scattered power into a set of orthogonal unitary scattering mechanisms given by the
eigenvectors of [T], which for radar backscatter themselves form the columns of a 3 x 3 unitary
matrix. Hence we can write an arbitrary coherency matrix in the form
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where the P i may be interpreted as probabilities for a Bernoulli model of scattering from random
media [1] as a weighted sum of coherent scattering mechanisms given by the 3 eigenvectors or
columns of [U 3] as shown in equation 7
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While the eigenvalues and eigenvectors are the primary variables of interest, several secondary
parameters can be defined as functions of the components of the eigen-decomposition. There are
four of these of interest in radar, two from the eigenvalues, namely the entropy and anisotropy,
and two from the eigenvectors, the �  and �  angles, as shown in figure 1.

The parameters �  and �  can be interpreted as generalised rotations of the mechanism w as shown
in figure 2. In fact the parameter �  is just the physical orientation of the object about the line
of sight. However, the �  parameter is an indicator of the type of scattering and is called the
scattering mechanism.

Figure 1 : Secondary Scattering Parameters Derived from the Eigenvalues
and Eigenvectors of [T]
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If the pair H/ À  are plotted on a plane then they are confined to a finite zone as shown in figure
3. The alpha parameter ranges from 0 to 90 degrees and is an average representation of the
eigenvector information while the entropy lies between 0 and 1 and represents the eigenvalue
information in [T].  As both are invariant to the type of polarization base considered, they
provide a convenient pictorial representation of the information in [T].

Figure 2 : The definition of the À  and Á  parameters

Figure 3 : The entropy/alpha plane
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Note that because of the averaging across the eigenvectors, the visible range of å  reduces with
increasing entropy. The å  variation is bounded as shown by curves I and II in figure 3. Curve I
represents the lowest å  value for a given entropy and is achieved in the case of azimuthal
symmetry in the scattering volume. The maximum å  curve II is achieved for multiple scattering
in the volume. All random volume problems can be mapped as a point in this plane and hence this
forms the basis for the unsupervised classification procedure to be described.

Figure 4 shows a set of four important mappings onto this plane as follows:

1) The first mapping is to segment the plane into single and multiple scattering by drawing
the mean value of alpha as a function of entropy (shown as the black line in figure 4a). We
see that at H = 0, å  = 45 degrees is the mid-point and this corresponds to dipole
scattering when one of the copolar scattering coefficients falls to zero. The phase
change from single to multiple scattering occurs at this zero point. All points above this
line correspond to multiple scattering while those below to single. This is the first
important segmentation of the H/ å  plane.

2) The next key mapping is to consider volume scattering [8,9,15]. Here we make use of two
key results: the first is that vegetation is a mixed ordered/stochastic scattering
environment where the leafy structure provides a random background to the more
ordered stalk and branch structure. A common model is to use a mixed uniaxial crystal
plus random volume as shown in figure 5. For this reason we must include the possibility
of both ends of the order spectrum in radar polarimetry i.e. situations where the uniaxial
component is dominant and those where the random component is strongest.

The second key result is that the scattering vector for a spheroidal particle in arbitrary
orientation can be written in the factored form [8,16,22]
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where the parameters are defined as follows:õ
  - particle canting angle 0 ö  õ ÷ ø ùú  -  particle tilt angle 0 ö  ú ÷ ù
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Figure 4 : Segmentation of the H/ �  Plane
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Figure 5 : Two component model of vegetation propagation in radar polarimetry

The strongest depolarising effects are caused by extremely prolate particles or dipoles. We can
then use equation 8 and the mixed model of figure 5 to generate the H/ �  variation of scattering
by a cloud of ordered and disordered dipoles. This loci is shown in figure 4a as the green line,
which we see lies in the single scattering domain as it should.

Note that when the entropy is zero we have a uniaxial crystal and �  is 45 degrees as expected
for dipoles. As the volume becomes more random then we see that the entropy increases.
However the �  value does not vary much, indicating that particle shape is not changing. The limit
is obtained for a random distribution, which by definition will lie somewhere on curve I. For
completely random distributions [T] is diagonal and the eigenvalues can then be analytically
determined from averages of equation 8 as [16,22]		
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For R tending to infinity this yields the highest possible entropy in single scattering from a cloud
of particles. This entropy is H = 0.95 and is a key point on the H/ �  diagram.

Two important problems can now be derived from this H = 0.95 point. The first is to consider the
presence of multiple scattering in the volume. This yields the loci shown in red in 4b. The lower
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locus is for a single multiple scattering component as might arise for example when a dihedral is
placed beneath a vegetation canopy. The upper locus is for random effects in the canopy itself
when the multiple scattering occurs between randomly oriented particles. We see that as the
level of dihedral response increases so these two loci diverge at lower entropy.

The second important problem is to consider variations in particle shape. Although vegetation
scattering is generally dominated by prolate objects, some special cases arise when oblate
scatterers can be dominant. Using equation 9 we can set R = 0 for a random cloud of oblate
scatterers and obtain the minimum entropy as 0.63. Hence a mixed random volume of prolate and
oblate particles will lie along the blue loci on curve I as shown in 4c.

Finally we must consider scattering by non-vegetated surfaces. Here an important limiting
problem is the Bragg model. This applies in the limit ks < 0.3 where k is the wavenumber and s the
rms roughness of surface and predicts an entropy H = 0 for all surfaces. The d  parameter
however is independent of roughness and increases with angle of incidence and with dielectric
constant of the surface. The limiting value of d  is 45 degrees for grazing incidence when VV is
much larger than HH. Hence this model lies along the y-axis of the H/ d  plane staying in the single
scattering regime as it should.

Natural surfaces do not satisfy this model, especially at the important frequency of L-band
where many natural roughness scales lie in the range 0.2 < ks < 1. However, by using a depolarising
extension of the Bragg model for rough surfaces it has been shown that the entropy of surface
scattering can be non-zero [18]. Figure 4d shows the loci of this model for a surface with
increasing roughness and dielectric constant. We note that the maximum entropy increases with
angle of incidence but for angles around 45 degrees or less it never exceeds 0.5.

We can now use all these observations to segment the H/ d  plane into important zones of
scattering behaviour. Figure 4e shows a summary of this segmentation with the various model loci
superimposed.

Vertically we can distinguish 3 classes of surface volume and multiple scattering. Horizontally we
can then segment each into 3 classes of low, medium and high entropy. There results 9 distinct
segments although high entropy surface scattering is excluded by the curve I boundary. Hence
we obtain 8 useful classes as shown in [1]. Note that these class boundaries are not entirely
arbitrary as suggested in [7]. They relate to boundaries between physical models of scattering
behaviour. Of course in practice, speckle causes fluctuations in the H/ d  points and so noisy
segmentations. This can be minimised by using a large number of looks in the data or by using this
method as the first stage in an iterative statistical classification procedure as demonstrated in
[5,7]. Nonetheless it is important to realise that these boundaries are chosen for physical
reasons and are not statistical in nature.

To illustrate application of the technique, we show in figure 7 a montage of scenes obtained using
the L-band AIRSAR system. On the left we show total power images of the scenes and on the
right the corresponding entropy/alpha distributions. In the top image we show a volcanic area,
which is a mixture of rough surface and vegetated re-growth areas. The H/ d  plot shows
azimuthal symmetry across this scene and three main classes of terrain cover, namely high



entropy volume scattering corresponding to the heavily vegetated areas, medium entropy surface
scattering corresponding to rough surfaces and low entropy smoother surfaces. Figure 6 shows
the result of an unsupervised classification of these pixels. The color coding is such that 1-2-3
are blue and correspond to surface scattering, 4-5-6 are volume scattering and 7-8-9 multiple
scattering.

Figure 6 : Unsupervised 9-Class Image of Volcanic Region

In contrast, in the centre of figure 7 we show a tropical forest scene and note a high
concentration of pixels in the corresponding high entropy volume scattering class. We notice two
clear-cut regions and note from the H/ e  plots that they have very different polarimetric
behaviour, appearing as two distinct tails on the density variations.

Finally, in the lower example we show a sea ice scene. Here we have predominantly surface
scattering as expected, although we notice that the scene is not azimuthally symmetric. This is
significant as we shall see that it implies that the scattering Anisotropy is an important
parameter for sea ice classification.



Figure 7 : Montage of H/ f  distributions for vegetated lava scene (top),
tropical forest (centre) and sea ice (lower)

In order to extend this procedure to more classes, we must first consider features of the
polarimetric response not represented by the H/ f  plane.  We now consider this problem in detail
using a general decomposition [13].



3. The Polarising/Depolarising Decomposition

The starting point for our analysis is the idea of point reduction, which states that there exists
a cascade of transformations which can be used to reduce any unitary scattering vector to the
identity as shown in equation 10
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where the elementary transformations can be written in terms of the scattering vector
parameters as shown in equation 11
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This allows us to reference the unitary matrix information to the maximum eigenvector, which by
definition is the dominant non- depolarizing scattering mechanism. Equation 12 shows how
application of the unitary reduction operator to a general  N x N unitary matrix leads to an N-1
dimensional representation.
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This is an important result, as it permits factorisation of the eigenvector information into
polarizing and depolarizing components as we now demonstrate.

To establish a short hand notation, we employ the following convention to describe partition of
the unitary matrix information into polarizing and depolarizing segments. We bracket together
the parameters as follows. Inside square brackets we consider only the depolarization effects
whereas inside round brackets we consider only polarizing effects

[E+L] depolarizing parameters
(E+L) polarizing parameters

where E is the number of eigenvector parameters and L the number of eigenvalue parameters.
Note that the total number of eigenvector parameters = [E] + (E) = dim( SU(N)) — r(SU(N)) where
r is the rank of the Cartan sub-algebra or the number of mutually commuting generators [19,20].
On the other hand [L] + (L) = N, the number of non-negative real eigenvalues.   We now consider
the following special cases of decomposition:



General  Bistatic Scattering

In this case [T]/[M] have 16 parameters in total and SU(4) is the governing unitary group which
can be decomposed as follows:

SU(4) has dimension 16 and rank 4 so [E]+(E) = 16-4 = 12 and [L] + (L)= 4 . By application of the
unitary reduction operator, depolarization in bistatic scattering systems is controlled by [L] = 3
eigenvalues and the SU(3) group for eigenvectors. Now, SU(3) has dimension 8 and rank 2 so that
we can write the polarizing/depolarizing decomposition in compact form as

[T]bistatic = [6 + 3] + (6 + 1)                                                        - 13)

which shows that there are 6 eigenvector parameters associated with depolarization. These can
be generated from the Gell-Mann matrices as shown in [19].

Backscatter

In this important special case [T]/[M] have a maximum of 9 parameters and SU(3) is the
governing unitary group for the eigenvectors of [T]. This time a significant simplification occurs,
as the unitary reduction operator means that all depolarization effects are controlled by SU(2),
which has dimension 3 and rank 1.  Hence we obtain the important result that in backscatter the
polarized/depolarized decomposition can be written in compact form as

[T]monostatic = [2 + 2]+(4 + 1)                                                      - 14)

which shows that the eigenvectors contain 2 depolarizing parameters, complemented by 2 real
eigenvalues. Note that this decomposition makes no assumptions about symmetry (other than
reciprocity) and includes the most general case when helicity and arbitrary orientation effects
are included. We now turn to consider special cases of equation 14 when symmetry constraints
are imposed.

Equation 14 summarises a new decomposition into polarizing and depolarizing components.
However, in the remote sensing of random media such as forest and surface scattering, symmetry
constraints often further simplify this decomposition [2,19] as we now show.

Azimuthal symmetry

This is the most severe symmetry assumption and leads directly to a diagonal coherency (and
Stokes) matrix with 2 degenerate coherency eigenvalues. Consequently, [T]/[M] have only 2 free
parameters and the coherency matrix for backscatter can be written as shown in equation 15
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In this symmetry assumption the polarizing/depolarizing decomposition reduces to equation 16

[T]az = [1] + (1)                                                            - 16)

In this case only 2 polarization parameters are required to characterize the medium (such as VV
power and HH/VV coherence or HV but not HV and HH/VV coherence as these two are now
trivially related).  We considered an analytic example of this case in equation 9 for random volume
scattering.

This assumption is generally too severe for microwave remote sensing problems of land surfaces
and hence we turn to a less restrictive but more practical assumption of reflection symmetry.

Reflection Symmetry

In this case [T]/[M] have 6 free parameters and the coherency matrix can be written as shown in
equation 17
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where Î  is the angle mismatch between radar co-ordinates and the axis of symmetry (for example
the local normal in surface scattering). In this case the decomposition has more structure and can
be written as shown in equation 18

[T]ref = [2] + (4)                                                         - 18)

This is a very interesting result as it shows formally that for backscatter from random media
with reflection symmetry [E] = 0 and [L] = 2, so the eigenvectors contain no information about
depolarization but only about the polarizing influence of the dominant eigenvector. All the
depolarization information for such media is contained in the 2 minor eigenvalues of [T] and hence
can be extracted by using such parameters as the anisotropy or circular LL/RR coherence [3].

4. Extension of the H/ Ï ÏÏÏ  classification technique

In the previous section we detailed a decomposition of general scattering problems into
polarising and depolarising components. For backscatter we saw in equation 14 that the polarising
component has (4+1) parameters. The single eigenvalue parameter is the amplitude, which we
choose to set to unity in this approach. However this still leaves (4) polarising eigenvector
parameters. In the original H/ Ð  approach we made use of only two of these, namely the alpha and
beta angles as shown in figure 3. There are two others, derived from the phase angle between
the elements of the scattering vector. We now consider a physical interpretation of each:



The Helicity Phase Ñ
This phase is defined in equation 11. We can generate a physical interpretation by generalising
equation 8 to include scattering from chiral particles in which case the scattering vector from
one such particle can be written as [22]
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where à  is the chiral parameter (+ for left handed and — for right handed particles). Note that
this scattering matrix can no longer be diagonalised by a rotation matrix and that the signature
of chirality is a 90 degree phase angle between the second and third elements of the scattering
vector. This we term the helicity phase as it corresponds to backscatter from a helix as first
developed by Krogager and discussed in [2].

We can also generate the eigenvalues of the coherency matrix for a random cloud of chiral
particles. For small chirality parameter these are given as [22]ááãâáäâ
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Note how the smallest eigenvalues have now split, generating Anisotropy A. However for chirality
this split will be very small and so A will be close to zero, making it very difficult to measure
unless the system calibration is very good. More significantly the eigenvectors of the coherency
matrix have the form
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This demonstrates that one of the depolarising parameters can also be an indicator of helicity.
In the case of equation 21 the dominant eigenvector has zero helicity but  the presence of
chirality in the cloud generates a phase shift in the depolarising subspace.

In conclusion we note that helicity phase can appear in two important parameters;÷  In the polarising eigenvector as a phase shift between the second and third elements, or÷  In the depolarising subspace as an SU(2) parameter

In the first case we have an ordered arrangement of handed particles while in the latter we have
a random cloud. Such handedness can arise naturally in vegetation scattering through the process



of phyllotaxis  [23]. Future studies will address the estimation of these parameters from SAR
data

The Propagation Phase ø
Assuming we are working in the eigenpolarization basis then the propagation of a wave can be
represented in terms of the two wavenumbers ka and kb as
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If we write the differential wavenumber as

� ���k ka b

then in terms of the two-way path required for radar scattering, we can derive the effect of
propagation on the lexicographic scattering vector as a matrix [P] defined as
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Converting now to the Pauli matrix base so that we can combine rotations with propagation
effects, we have
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If we now consider only loss-less propagation then the medium become birefringent and displays
differential phase shifts between propagating polarization states. In this case P becomes
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This demonstrates that propagation phase appears as a phase shift between the first and second
elements of the scattering vector. This is just the angle ø  in equation 11.  Hence this parameter
is an indicator of significant differential phase shifts in the medium. In practice this arises in
ordered media when the uniaxial component is significant. It does however contain information on
propagation depth and hence on density and height of vegetation, although a better way to
access this structural information is through the use of Polarimetric Interferometry
[10,11,12,21]



Final consideration must now be given to the depolarising parameters available for backscatter
problems. From the eigenvectors we have /  and now a helicity phase 0  as shown in equation 21.
For the eigenvalues, we already make use of the entropy H, but this can be usefully augmented by
a second independent parameter, the Anisotropy A.

Figure 8 : Anisotropy and Entropy as independent parameters

Figure 8 shows how the same entropy can be obtained for two different anisotropy values. A
relates to the ratio of minor eigenvalues of the coherency matrix. We have already seen that
azimuthal symmetry forces A = 0 and hence anisotropy can be considered a measure of the
departure of the scattering from this severe form of symmetry. The most important class of
problems where A becomes significant are those dominated by reflection rather than azimuthal
symmetry. In this category there are two important examples, namely scattering by uniaxial
particle clouds and scattering by surfaces, where the surface normal is often an axis of
symmetry in the problem. In both cases as the system becomes more ordered and less stochastic
we can expect a higher anisotropy. Hence A can be used as a measure of surface roughness and
of particle orientation distribution [18].

We have already seen an example of this symmetry in surface scattering by sea ice in figure 7.
If we apply just the H//  classification then the scene is dominated by 1 class (low entropy
surface scattering) as shown on the left of figure 9. However, if we include A then we can see
immediately a second important class appear as shown on the right of figure 9. This classification
was generated by splitting the data into high and low A segments using a threshold of A=0.5 and
then applying the 8 level classification to each segment. The resulting 16 classes are then color
coded so that Anisotropy bifurcations are close in the color map. This example demonstrates the

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
1

 H = 0.9

0.2

0.0

1.0

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

1 111 1 1111 111 1 1113 1

2 1

0
.
8

1.0

0.4
0.4

A = 0

1.0
1.0

0.3

A = 0.54



importance of using A in initialising the iterative Wishart classifier. Future studies will be
extended to include the other parameters in the classification scheme.

Figure 9 : Sea Ice Classification using H/ 2  (left) and H/ 2 /A (right)

5. Conclusions

In this paper we have reviewed the entropy/alpha approach to unsupervised classification of
polarimetric SAR imagery. This provides a general purpose, robust method for the classification
of a wide diversity of land, sea and ice surfaces.  The basic method and its applications have been
extensively covered in [1,24]. Here we up-date these papers and extend the original approach
using the latest developments in Radar Polarimetry and Interferometry.

We have stressed the role of this technique as the first stage in an iterative maximum likelihood
approach based on the Wishart distribution. It follows that it is important to optimise the
number and separability of classes at the input of this process. To this end we have presented a
full decomposition of scattering problems into polarizing and depolarizing elements. This shows
that for backscatter we may have up to 4 new parameters for use in a more refined classifier.
Two of these are phase angles from the maximum eigenvector and indicate dominant helicity or
propagation phase in the medium. The other two arise from the depolarizing sub-space and can be
associated with random chirality and weak propagation effects.  Future studies will address the
estimation and integration of these parameters into the technique.

We have illustrated the technique with examples from the JPL AIRSAR data base for different
types of land cover and have shown that the classification maps so obtained are well correlated
with important features in the scene. Such a technique is simple to apply, can be derived from
SLC or multi-look Stokes matrix data and provides a natural interface to more elaborate
inversion techniques based on detailed physical models.
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