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Abstract

The capability of active microwave remote sensing to measure soil moisture was validated
via the use of GIS techniques incorporating soil landscape unit assessment and terrain
wetness. The work was carried out over an 80 km? region in the Mount lofty Ranges in
South Australia. Search for atypically wet sites (ie. wet areas in a dry landscape, which
were non-irrigated) was completed using analysis of co-registered visible - infra-red
imagery from Landsat.

Soil dielectric constant (a surrogate for volumetric soil moisture) was derived from L Band
polarimetric AIRSAR data acquired in the 1993 mission to Australia. Results from this
dielectric modelling, which have been previously reported by Bruce (1996), showed areas
of wet soil in the landscape. At the sub-catchment scale ( 2 km?) reasonable correlation
with ground measurements of soil moisture was observable and, moreover, correlation with
other data sets indicating soil wetness was encouraging. These data sets, reported in more
detail by Fitzpatrick et al (1999), consisted of a Topographic Index (Tl), derived from
contributing surface area and slope, a Discharge Index, derived from EM31 ground
measurements, a Vegetation Colour Index, derived from multi season aerial photography
and a potential waterlogging attribute, extracted from a Soil Landscape Units (SLU) GIS
data set derived from mapping at 1 : 50,000 scale. The strength of the spatial correlation
between these data sets led to a comparison, at the regional scale, of the soil moisture as
inferred from polarimetric radar, with the SLU and Tl. This comparison showed that
indeed L band Polarimetric radar can be processed to estimate broad categories of soil
wetness and, when combined with co-registered Landsat TM data, can be used to locate
unusually wet sites where ground water discharges at the surface.

In a related component of the research, it was found that soil dielectric/wetness derived
from the polarimetric SAR assisted the prediction of soil salinity at both the catchment and
regional scales. At the latter scale soil dielectric was combined with geology, Tl and SLU
to create a best estimate of potential salinity.

Soil Moisture Estimation Using AIRSAR

Soil dielectric constant has been derived from the use of Synthetic Aperture Radar (SAR)
multi-polarisation C-, L- and P- band data from the NASA/JPL airborne synthetic aperture radar
(AIRSAR) instrument which acquired imagery over the study area for early spring, 1993. The
processed data for the site was received from JPL as a 12 band composite image with pixel size of
approximately 6.7 m x 8.3 m. The characteristic effects associated with data of this type, ie. near-
range compression, brightness fall-off and radar speckle were all present in the image and it was
necessary to correct for some of these geometric and radiometric errors prior to processing for soil
moisture determination. In addition the image was re-sampled to a 10 m pixel size for effective
comparison with the other data sets.



Dubois et al. (1995) suggested an empirical approach for the modelling of radar backscatter
(o°) from the variables of incidence angle (), soil dielectric constant (&), wave number (K), surface
roughness (s) and wavelength (A). The model, which utilises co-polarised data and is expressed in
the following relationships:
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was implemented for the L-band of the AIRSAR data. The inversion model, which is described in
more detail by Bruce (1996), utilises three input raster data sources and produces two output raster
images. The first input consisted of the corrected AIRSAR image, which had been despeckled and
geometrically corrected. The second input consisted of an image of local incidence angle deduced
from the radar geometry combined with the DEM described above. This derivation computes the
slope and aspect of each DEM cell and uses this as input to a trigonometric solution for the local
incidence angle in the direction of the SAR pulse. Thefinal input to the model is a binary mask
image in which all objects with large backscatters, particularly in the VV polarisation, are identified
so asto not be used in the output calculations. These objects, which are usually stands of native
trees, buildings, etc., are masked out of the output data as they are not bare soil (or soil covered by
grass). The two outputs of the model are maps of soil dielectric/wetness and roughness.

Results of the work conducted by Bruce (1996) have been compared with ground
measurements and GIS data at the catchment scale (2 km?). The variation in the raw values of the
soil dielectric constant is considerable with some values even being lessthan 1! This shows
weakness in the model and/or unsuitability in the application of the model to this terrain type. Some
poor results (approximately 1 % of the input) can be attributed to backscatter from terrain objects
such as wire fence lines within +/- 25° parallel orientation to the radar antenna. In order to make this
estimate of dielectric constant more useful, the output was processed such that error values were
rejected and the remaining values re-coded to six classes of soil wetness/drainage. A generalisation
of the output was then undertaken using a majority filter. Re-coding was validated at the catchment
scale by comparison with the other data sets and then applied to the majority of the area covered by
the AIRSAR image (~ 80 km?) with the near range component of the image data being removed due
to the extremely low incidence angles. Figure 1 illustratesthisfinal dielectric/wetness product.



RADAR derived soil moisture: Herrmann's
catchment study area, Mt Lofty Ranges
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RADAR derived soil moisture: Mt Torrens
study area, Mt Lofty Ranges
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Figure 1 : Soil dielectric constant/wetness at the catchment scale (2km?) —top and the
regional scale (80 kfhbottom.

In Figure 1 colours range from white (masked), through brown (dry soils), to yellow and
red (wet, poorly drained soils). In order to validate the use of the dielectric/wetness mapping
reported above, a second predictive indicator of soil wetness was developed : this was the
Topographic Index.

Topographic Index (T1)



The Topographic Index was derived from analysis of the shape of the land surface by
Davies et al (1998). The primary modelling structure used in this analysis of catchment topography
isthe DEM, of which there are three fundamental representations: grids, triangular irregular
networks and digital contours (see Weibel and Heller, 1991 for a detailed review of elevation model
structures). To determine the spatial distribution of atopographic index for the study areaa
hydrologically correct, grid DEM was created using the method of Hutchinson (1989). The
interpolation technique imposes morphological constraints on the DEM using existing drainage, such
that elevations decrease monotonically down each stream line and ridges and streams are represented
more accurately (Hutchinson, 1993). Theinputs to the interpolation are essentially drainage and
elevation data and prior to input, the required inputs were edited and cleaned to remove any errors of
logical consistency.

For this study a DEM with cell size of 10 m x 10 m was created as the most suitable for
simulating geomorphic and hydrological processes (Zhang and Montgomery, 1994), while reducing
the bias towards large topographic index values associated with coarser grid sizest(@uinn
1995). The topographic index, Kftanf) was calculated for the study area to represent the
geomorphic processes associated with soil moisture and its spatial distribution in the landscape. The
variables of the index( = specific catchment area; f&n local slope angle) were evaluated on a
cell by cell basis from the DEM, using the procedure of Hutchinson and Dowling (1992). This index
was computed for both a 10m resolution DEM for the entire area and a 5m resolution DEM available
for just the small focus catchment area. Results showed that the 10m resolution DEM provided a
better macro view of the catchment surface hydrology than the 5m DEM, which gave a view of the
micro patterns of potential surface water distribution. Consequently, the Topographic Index from
the 10m DEM was used in further analysis,which consisted of majority filtering and a re-coding to 5
drainage/wetness classes. The final result of the topographic analysis can be viewed in Figure 2
where colour ranges from green (low Topographic Index) to red (high Topographic Index). This
range can be viewed to represent a potential variation in soil wetness condition.



Topographic Index for Herrmann's
catchment study area, Mt Lofty Ranges
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Topographic Index distribution: Mt Torrens
study area, Mt Lofty Ranges
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Figure 2 : Topographic index (TI) at the catchment scale (top) and at the regional scale (bottom)
Soil Waterlogging from Soil Landscape Units (SLU)

Soil Landscape Units (SLU) data are produced for the whole of the state of South Australia
with 1:50,000 mapping by the Department for Primary Industries and Resources, SA (PIRSA). The
land classification tables associated with the digital SLU data summarise arange of key attributes for
each mapping unit. These attributes, or land qualitiesinclude: drainage, water erosion potential,
scalding, salinity and recharge potential. The classification ranks each of these land qualitieson a



numeric scale, according to eight, generically defined class limits. Each successive classimpliesan
increasing level of management input to overcome any limitation(s) identified by the classification
from Class | (very low level of limitation) to Class V111 (extreme level of limitation).

For this study, two attributes (salinity and drainage) were identified as being indicative of
aquic conditions (i.e. soil landscape units prone to waterlogging). These were selected asinputsto a
weighted index model with salinity given a greater weighting as it was considered an indicator of
more permanent wetness in the landscape (Cox et al., 1996). The results of thismodel are visiblein
Figure 3 and are shown at the regional scale only, as the original PIRSA mapping was not intended
to be used at large scales. Coloursin Figure 3 vary from brown (minor susceptibility to
waterlogging) through beige, green, gray and blue (severe susceptibility to waterlogging). This
aquic Index is a predictor of soil wetness as is the Topographic Index discussed above.



Aquic Soil Index: Mt Torrens study
area, Mt Lofty Ranges
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Figure 3: Aquic soil index from SLU data at the regional scale.

M ulti data set Comparison.

Comparison of the three models of soil wetness at the regional scale was carried by overlay
techniquesin GIS. Figure 4 provides the reader with a view of a section of the region showing all
three soil wetness models. Consultation of Figure 4 shows strong agreement between the critical
classesin the Topographic Index (yellow and red) and the aquic index (blue), with the Topographic
Index providing greater detail than the Aquic Index. Critical soil dielectric/wetness classes (yellow



and red) show some agreement with the other two indicators in the valleys, but also show
disagreement in some of the up slopes. The most noticeable difference is the linear grouping of high
soil dielectric/wetness running from south to north along the eastern edge of Figure 4 left. This
corresponds to a fault system known as Fendler Hill fault and represents areas of terrain with
relatively steep dopes facing away from the radar antenna. Furthermore, this fault is one of the
areas in the region where north — south rock lineaments feature at or near the surface.
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Figure 4 : Comparison of soil wetness from AIRSAR (left), Topographic Index (middle) and Aquic
Index (right) for the same section of the regional area.

A “best estimate” of drainage/waterlogging at the regional scale has been constructed from
the experience gained at the catchment scale. Up-scaling of processes using all data sets at the
catchment scale was not possible, as detailed vegetation index and discharge index data were not
available at the regional scale. Previous work by Bruce has shown that single date Landsat TM
imagery does not provide sufficient differentiation of vegetation classes and multi-season imagery
was not available. However, it is believed that future research (late 1999) utilising hyper-spectral
data will provide sufficient discrimination of vegetation units to allow its incorporation into the
model. Soil Landscape Units (SLU) data was used to derive the aquic index as described above and
this was utilised in conjunction with the soil dielectric/wetness and topographic index to generate the
best estimate of water logging at the regional scale. This estimate is derived from the following
raster GIS model :

BEWLg = 2*Tl + DC + Al



Where BEWLR = Best Estimate of drainage/waterlogging at the regional scale.
T1 = Topographic Index
DC = Soil Dielectric/wetness
Al = Aquic Index.

This model carries the same weights for the Topographic Index and soil dielectric as was
applied at the catchment scale and results in the information presented in Figure 5. This estimateis
predominantly a drainage/waterlogging prediction, but does carry some measurement bias through
the soil dielectric determination. The areas masked out in the soil dielectric/wetness modelling due
to large backscatter are now overridden by the other two data sets. Colours vary from brown (rarely
waterlogged — freely drained), through beige, green, grey to blue (very poorly drained — strongly
waterlogged).



Best estimate of drainagefwaterlogging:
Mt Torrens study area, Mt Lofty Ranges
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Figure 5 : Best estimate of soil waterlogging at the regional scale.

Combining Soil Dielectric and Landsat Data

Landsat Thematic Mapper data was acquired together with the 1993 radar data and at
subsequent dates. This was used in conjunction with the backscatter data to classify large objects
(buildings, trees, etc) for non inclusion in the soil dielectric/wetness modelling. Further information
from the red and infra-red bands (3,4 and 5) of the Landsat TM enabled easy identification of crops



used inirrigation. Itismost likely that these areas would have exhibited moist soils due to the
irrigation practice and thusiit is possible to differentiate between those areas in the landscape at
which moist soil is due to waterlogging and those areas which are moist due to irrigation. Figure 6
illustrates a subset of the region with Landsat TM 5 on the left and the dielectric/wetness map on the
right.

Figure 6 : Comparison of Landsat TM (5,4,3) and Dielectric/wetness

Itisrelatively easy to recognize irrigated crops in the left hand image by the small, smooth
bright green patches. Many of these correspond to areas of high dielectric/wetness (yellow and red)
in the right hand map. Thiskind of analysis shows the power of the combination of polarimetric
SAR with visible, infra-red imagery and suggests many other possibilities such asin the areas of
surface salinity.

Polarimetric Radar and Salinity

The relationship between the complex component of the soil dielectric constant and soil
salinity has been aluded to by Dobson (1993). Whilst the intention of the dielectric constant work
described above was to estimate soil moisture (using the real component of the dielectric constant) a
slightly unexpected outcome of related work was that, when constructing the “best estimate” of soil
salinity at the regional scale, Fitzpatrigtkal (1999) found that incorporation of the soil
dielectric/wetness produced a better estimate than other combinations of data. Soil
dielectric/wetness was used in conjunction with digital geology, Tl and SLU to predict the existence
of surface salinity in the landscape. This was validated by field verification at a number of sites
across the region.



Conclusions

The results of the 1993 AIRSAR data acquisition over the central Mount Lofty rangesin
South Australia are encouraging from the perspective that extreme values of soil moisture can be
qualitatively measured. When results from the early spring acquisition are compared with predictive
models using soil landscape units and topography, reasonable agreement is apparent. However,
differences do exists between these models, with such differences possibly attributable to extreme
incidence angle effects, or to the existence of rock structures in fault zones. A new acquisition of the
same area simultaneously with extensive ground truthing is planned for PACRIM 2 in April 2000.
Thistiming will be very advantageous as it represents the end of the long dry summer season : a
time when moist soils are either irrigated or are experiencing ground water discharge. The latter isa
strong indicator of surface salinity in this geographic area and tests will be undertaken to examine
the relationship between this phenomenon and the complex component of the dielectric constant
inferred from the polarimetric SAR.
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