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Abstract

Advances in information technologies are narrowing the gap
that traditionally existed between computing methods for radar
signal processing, digital communications, and digital signal pro-
cessing in general. A new field is becoming more stable as new
applications and challenges are met for on board, real time op-
erations. This field is termed computing methods for radar
communications signal processing, and it deals primarily with
the analysis, design, and implementation of digital signal pro-
cessing computing methods radar signal communications opera-
tions. Special attention is being given in this area to efficient
implementation of signal operators for object domain to spectral
domain transformations. This endeavor is somewhat straightfor-
ward when treating small-size one-dimensional signals. In dealing
with multidimensional signals, we encounter a great many diffi-
culties. These difficulties are compounded as the signals increase
in size and dimension. New computing methods frameworks are
sought in order to aid multidimensional digital signal processing
and enhance radar signal communications implementation efforts.
The work presented here deals with basic signal algebra concepts
in the formulation of Kronecker Fourier factors as signal opera-
tors for discrete cross-ambiguity function processing in SAR point
spread function (PSF) modeling.

∗This work was supported in part by NSF Grant 9977071.
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1 Introduction

This work deals with the fundamental issue of the fast and efficient treat-
ment of microwave remote sensed data in order to extract information
important to a surveillance user. Great advances in active sensor technol-
ogy, communications, and signal processing technology are demanding
new computational theories, methods, and techniques to improve our
rapid awareness of our physical sensory reality. For the particular case
of SAR systems, this implies fast and efficient means for image forma-
tion and rendering from raw data. The identification of enhanced raw
data generation techniques will certainly contribute to improve at SAR
image formation processes. The work presented here concentrates on the
formulation Kronecker Fourier factors as signal operators for the alge-
braic modeling point target response functions using point estimates of
discrete cross-ambiguity surface computations. Our work centers on the
notion that enhancements and understanding of SAR point surface re-
sponse functions processing greatly depends on the efficient computation
of finite discrete cross-ambiguity functions. We, in turn, compute the
cross-ambiguity function using two-dimensional discrete Fourier trans-
form (DFT), cyclic shift, index reversal, modulation, and other signal
operators. For the work presented here we use Kronecker products no-
tation as a language to aid in the mapping of Fourier operators to DSP
microprocessor units and to identify similarities and differences between
commonly known formulations of two-dimensional fast Fourier transform
(FFT) algorithms as compositions of basic functional expressions.

There exist many formulations of fast algorithms for computing the
discrete Fourier transform (DFT). Kronecker array signal (KAS) alge-
bra, a branch of finite dimensional multilinear algebra, has been used
successfully as a language to identify similarities and differences among
various fast Fourier transform (FFT) algorithm variants as well as for
the creation of new variants. Each multidimensional DFT computation
is expressed in matrix form. The multidimensional DFT matrix, in turn,
is decomposed into a set of factors, called functional primitives, which
are individually mapped to the underlying computing structure. It is
in this mapping process where the language of KAS algebra becomes
instrumental. For a given computing structure and multidimensional
DFT matrix, there are many FFT algorithm variants which can map to
this structure. The language of KAS algebra aids in this mapping effort
by identifying the more computational efficient FFT variants and thus
reducing the hardware computing effort.
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2 Kronecker Signal Algebra

We introduce in this section some mathematical concepts which are use-
ful in describing the work. First, the concept of tensor or Kronecker
product of two matrices and then some basic ideas of Kronecker array
signal (KAS) algebra, a branch of finite dimensional multilinear algebra.
Let A and B be any two matrices. The Kronecker product of A and
B is given by A ⊗ B = [ak` · B]k,`∈Z/R, Z/R = {0, 1, · · · , R − 1}. Here,
we have assumed A to be a square matrix of order R. If B is also a
square matrix of order, say, S, then the order of A ⊗ B is R · S = N .
Let A and C be R×R matrices, and B and D be S×S matrices. Next,
form the Kronecker products A ⊗ B and C ⊗ D. Through direct ma-
trix multiplication we can show that (A ⊗ B)(C ⊗D) = AC ⊗ BD. If
we denote IR, IS as identity matrices of order R and S, respectively, we
have (A⊗B) = (A⊗ IS)(IR⊗B). From this expression we can see that
the action of computing with the matrix (A ⊗ B) can be performed in
two stages: An action for the computation of (IR ⊗ B), followed by an
action for the computation of (A⊗ IS). Let the N -point discrete Fourier
transform (DFT) of a one-dimensional discrete, complex, array signal
x[n], of length N, be defined by (x̂)[k] =

∑
n∈Z/N x[n]ωkn

N ; k ∈ Z/N,

where wN = e−j 2π
N

, and j =
√−1. Written in matrix form, we have

(x̂) = FN · x, FN = [ωkn
N ]k,n∈Z/N . We call FN a matrix representation of

the DFT operator. In the same manner, the two-dimensional discrete
Fourier transform of an N1 ×N2 discrete complex array signal x[n1, n2]
is defined by

(x̂)[k1, k2] =
∑

n1∈Z/N1

∑

n2∈Z/N2

x[n1, n2]ω
k1n1
N1

ωk2n2
N2

; k1 ∈ Z/K1, k2 ∈ Z/K2.

Also, ωN1 = e
−j 2π

N1 and ωN2 = e
−j 2π

N2 . Let FN1×N2 denote a matrix rep-
resentation of the two-dimensional discrete Fourier transform operator
acting on an N1 × N2 complex signal array x[n1, n2]. Through direct
matrix multiplication we can show that

FN1⊗N2 = (FN1 ⊗ FN2) = (IN1 ⊗ FN2)(FN1 ⊗ IN2)

FN1⊗N2 = (FN1 ⊗ FN2) = (FN1 ⊗ IN2)(IN1 ⊗ FN2)

If U1, U2, V1, and V2 are linear spaces over the complex field C, and
Ti : Ui → Vi, i = 1, 2, are linear operators acting over these spaces; then,
(T1 ⊗ T2) : U1 ⊗ U2 → V1 ⊗ V2, termed the Kronecker product of the
transformations T1 and T2, is the linear transformation satisfying the
following condition:

(T1 ⊗ T2) {u1 ⊗ u2} = T1 {u1} ⊗ T2 {u2}
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for all ui ∈ Ui, i = 1, 2. T1 ⊗ T2 is a Kronecker product of matrices
A⊗B; where, A and B are the matrix representations of the operators
T1 and T2, respectively, conditioned on bases selection criteria[3]. We call
the elements of the linear spaces by the names of vector array signals,
array signals, or, simply, signals. The linear spaces are turned into
linear algebras by introducing a vector array signal binary multiplication
operation invoked by the circular or cyclic convolution. Thus, we are
interested in the linear spaces of the form V = MR,S(C), as well as
linear T , such that

T : MR,S(C) → MR,S(C),

In general, we can say that if we have V = MR,S(C); then, the linear
space MR,S(C) can then be represented as the Kronecker product

MR,S(C) = MR,1(C)⊗MS,1(C)

in which the Kronecker mapping is the dyad mapping x⊗ y = xyT . The
signal algebras manifest themselves when we invoke multidimensional
array cyclic convolutions as array binary multiplication operations.

Let ZN = Z/N = {0, 1, 2, · · · , N − 1} . A one-dimensional array sig-
nal x, of length N , is said to be periodic, modulo R if R is a divisor
of N ; that is, N = R · S and x [a + bR] = x [a] , a ∈ ZR, b ∈ ZS. A
one-dimensional array signal x, of length N , is decimated modulo R if
R is a divisor of N ; that is, N = R · S and x [a] = 0, x [a + b ·R] =
x [a] = 0, a ∈ ZR; b ∈ ZS. These observations are very important when
considering the additive group theoretic properties (coset decomposi-
tions) of the input/output indexing sets of the matrix representation of
unitary operators T in linear algebras V . The matrix representation
of the operators can be decomposed into a set of factors which we term
Kronecker functional primitives and are, basically, sparse matrices. This
decomposition process usually leads to efficient algorithms for the action
of operators. Of particular importance to us is the ubiquitous discrete
Fourier transform operator.

2.1 Operators on L (Z/N)

The set of all one-dimensional array signals f : Z/N → C forms a lin-
ear space which we denote by L(Z/N). The set L(Z/N) is isomorphic
to the N -dimensional complex linear space CN . The set of N, N -point
array signals

{
δ{k} : k = 0, 1, . . . , n− 1

}
, where δ{k}[j] = 1, k = j forms

a basis for the space L(Z/N) which we call the standard basis. We
introduce the shift operator SN over the space L(Z/N). This opera-
tor is the central component in the characterization of shift-invariant,
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finite impulse response (FIR) operators commonly used for filtering op-
erations. Let the operator SN over the space L(Z/N) be defined in
the following manner. SN : L(Z/N) −→ L(Z/N), where δ{k} 7−→
SNδ{k} = δ{k+1}. Using 〈f, δ{k}〉 = f [k] = fk as an orthogonal pro-
jection operation, we write f =

∑
0≤k<N〈f, δ{k}〉δ{k}. Allowing FN

to operate on f gives FN(f) ≡ f̂ = FN(
∑

j∈Z/N fjδ{j}). After linear-

ity,
∑

j∈Z/N fjFNδ{j} =
∑

j∈Z/N fjχ
∗
j . To characterize cyclic, finite im-

pulse response (FIR) operators, we start by identifying the vector array
signal obtained by letting the FIR operator Th act on the unit sam-
ple array signal δ. Since any N -th order vector array signal f can be
written as a linear combination of shifted versions of δ, knowing the re-
sponse Th(δ) will help in determining Th(f). We call the unit sample
response or impulse response of the system Th the result obtained by
applying Th to the unit sample sequence δ, which sometimes is called
the impulse signal. Thus, we have Th(δ) =

∑
0≤m<M h[m]Sm

Mδ{0} or∑
0≤m<M h[m]δ{m} = h. The unit sample response of an FIR operator

Th is the array signal h. For any given vector signal f ∈ L(Z/M), we
can always write f =

∑
k∈Z/M f [k]Sk

Mδ or
∑

k∈Z/M f [k]δ{k}. Evaluating

f at j ∈ Z/M results in f [j] =
∑

k∈Z/M f [k]δ{k}[j] or∑
k∈Z/M f [k]δ[j−k]. The indexing set A = Z/N = {0, 1, . . . , N − 1}

forms an abelian group with modulo N addition as the internal binary
operation. Its dual is Â = {Nχ{k} : k ∈ Z/N}, with χ{k} : Z/N −→ C,
with [m] 7−→Nχ{k}[m] = e+2πjk·(m)/N , j = 2

√−1. When no ambigui-
ties arise, we drop the superscript N from the expression Nχ{k}. The
value Nχ{1}[1] is usually written as ωN = e−2πj/N , j = 2

√−1. The func-
tions χ{k} are usually termed exponential sequences, characteristic se-
quences, or, simply, characters. Given an N -point impulse response
signal, h ∈ L(Z/N), and an input vector array signal, x = χ{k}, the

output y, after acting with Th, becomes y =
∑

j∈Z/N h[j]Sj
Nχ∗{k} or

Th {χ∗k}. Another important operator is the cyclic reflection operator,
denoted by the symbol RN . Its action on the linear space L(Z/N) is
described by RN : L(Z/N) −→ L(Z/N), with (f) 7−→ RNf = f (−).
Here,(RNf)[k] = f (−)[k] or fN−k, Modulo N , and k ∈ Z/N.

3 Point Surface Response

Kronecker array signal (KAS) algebra has been instrumental in the anal-
ysis, design and implementation of different classes of algorithms for sig-
nal processing computing methods. In this work we concentrated on
the design of variants of algorithms for the computation of the finite,
discrete, radar cross-ambiguity functions, and their software and hard-
ware realizations. The algorithms implementation methodology is an
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improvement over existing formulations. Enhancements on the method-
ology concentrate on group theoretic techniques applied to input/output
data indexing sets in a KAS algebra and linear operator setting, on mod-
ified re-sampling techniques, and on the efficient computation of two-
dimensional fast Fourier transforms. The algorithms have been tested
in MATLAB and are currently being ported to TI 6711 DSP comput-
ing units. As it was point out above, multidimensional FFT algorithms
can be expressed as Kronecker products of lower dimensional FFT’s.
We used this approach throughout this work. We proceed to define
the basic formulation for the finite, discrete, radar cross-ambiguity used
throughout this work. Let f, g be functions on L (Z/N), the linear, com-
plex space of all N -point, one-dimensional, vector array signals. The
finite, discrete, radar cross-ambiguity function A (f, g) [a, b] is defined
on the cartesian product indexing set Z/N × Z/N as A (f, g) [m, k] =∑
n∈Z/n

f [n] · g∗[n+m]e−j 2π
N
·k·n.We use gm,k[n] = g[n+m]ej 2π

N
·k·n to write

A (f, gm,k) [p, q] = e−j 2π
N
·k·nA (f, g) [m + p, k + q]. This expression intro-

duces the study of various additive group theoretic techniques on the
input output indexing sets of the computation as well as time-frequency
analyses. We proceed in the next sections with the introduction of
Fourier expressions as factors in the composition of Fourier transforms
so essential for cross-ambiguity function processing.

3.1 (IR ⊗ FS) : Parallel Fourier Factor Operation

The action of this functional primitive on the input sequence x is as
follows:

(IR ⊗ FS) x =







1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




︸ ︷︷ ︸
R−times

⊗FS




x

The Kronecker product (IR ⊗ FS) is obtained multiplying each element
of the identity matrix IR by the Fourier matrix FS. Thus, it has the
following

(IR ⊗ FS) x =




FS 0 · · · 0
0 FS · · · 0
...

...
. . .

...
0 0 · · ·FS




︸ ︷︷ ︸
R−times

x
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From the structure of the operation (IR ⊗ FS) x can be observed that
each FS will act on an S-point segment of the input sequence x. That
is, if x is divided in R segments of length S, the operation (IR ⊗ FS) x
can be seen as follows:

(IR ⊗ FS) x =




FS 0 · · · 0
0 FS · · · 0
...

...
. . .

...
0 0 · · ·FS




︸ ︷︷ ︸




x0

x1
...

xR−1




R−times

where x0 =




x [0]
x [1]

...
x [S − 1]


 , · · · , xR−1 =




x [(R− 1) S]
x [(R− 1) S + 1]

...
x [RS − 1]




Also, it can be observed that each FS acts on an independent segment of
data of length S. This means that if it has available a parallel computing
unit with at least R processing units, the operation (IR ⊗ FS) x could be
performed in parallel fashion, where each processing unit would execute
the operation FSxi, i ∈ ZR.

3.2 (FR ⊗ IS) : Vector Fourier Factor Operation

The action of this functional primitive on the input sequence x is as
follows:

(FR ⊗ IS) x =







1 1 1 · · · 1
1 ωS ω2

S · · · ωS−1
S

1 ω2
S ω4

S · · · ω
2(S−1)
S

...
...

...
. . .

...

1 ωS−1
S ω

2(S−1)
S · · ·ω(S−1)(S−1)

S



⊗ IS




x

The Kronecker product (FR ⊗ IS) is obtained multiplying each element
of the Fourier matrix FR by the identity matrix IS. That is,

(FR ⊗ IS) x =




IS IS IS · · · IS

IS ωSIS ω2
SIS · · · ωS−1

S IS

IS ω2
SIS ω4

SIS · · · ω
2(S−1)
S IS

...
...

...
. . .

...

IS ωS−1
S IS ω

2(S−1)
S IS · · ·ω(S−1)(S−1)

S IS




x

From the structure of the operation (FR ⊗ IS) x can be observed that
each element of (FR ⊗ IS) will act on an S-point segment of the input
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sequence x. That is, if x is divided in R segments of length S, the
operation (FR ⊗ IS) x can be seen as follows:

(FR ⊗ IS) x =




IS IS IS · · · IS

IS ωSIS ω2
SIS · · · ωS−1

S IS

IS ω2
SIS ω4

SIS · · · ω
2(S−1)
S IS

...
...

...
. . .

...

IS ωS−1
S IS ω

2(S−1)
S IS · · ·ω(S−1)(S−1)

S IS







x0

x1

x2
...

xR−1




where x0 =




x [0]
x [1]

...
x [S − 1]


 , · · · , xR−1 =




x [(R− 1) S]
x [(R− 1) S + 1]

...
x [RS − 1]




Each element of (FR ⊗ IS) acts on a segment of data of length S. This
means that if it has available a computing unit with vector processor
architecture with at least R vector registers, whose vector length is at
least S, the operation (FR ⊗ IS) x could be performed in a vector format.

3.3 (IM ⊗ (FR ⊗ IQ)) : Mixed Parallel-Vector Fourier
Factor Operation

This operation can be seen as follows:

(IM ⊗ (FR ⊗ IQ)) x =







1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




︸ ︷︷ ︸
M−times

⊗ (FR ⊗ IQ)




x

The Kronecker product (IM ⊗ (FR ⊗ IQ)) is obtained multiplying each
element of IM by (FR ⊗ IQ). Thus, the operation (IM ⊗ (FR ⊗ IQ)) x
can be expressed as follows:

(IM ⊗ (FR ⊗ IQ)) x =




(FR ⊗ IQ) 0 · · · 0
0 (FR ⊗ IQ) · · · 0
...

...
. . .

...
0 0 · · · (FR ⊗ IQ)




︸ ︷︷ ︸
M−times

x

From the structure of the operation (IM ⊗ (FR ⊗ IQ)) x can be observed
that each element (FR ⊗ IQ) will act on a R · Q-point segment of the
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input sequence. That is, if x is divided in M segments of length R · Q,
the operation (IM ⊗ (FR ⊗ IQ)) x can be seen as follows:




(FR ⊗ IQ) 0 · · · 0
0 (FR ⊗ IQ) · · · 0
...

...
. . .

...
0 0 · · · (FR ⊗ IQ)




︸ ︷︷ ︸




x0

x1
...

xM−1




M−times

x

where x0 =




x [0]
x [1]

...
x [RQ− 1]


 , · · · , xM−1 =




x [(M − 1) RQ]
x [(M − 1) RQ + 1]

...
x [MRQ− 1]




Each (FR ⊗ IQ) acts on an independent segment of data of length R ·Q.
Therefore, if it has available a parallel computing unit with at least M
processing units, the operation (IM ⊗ (FR ⊗ IQ)) x could be performed
in parallel way, where each processing unit would execute the operation
(FR ⊗ IQ) xi, i ∈ ZM .

4 Summary and Conclusions

Kronecker-core array signal algebra, a branch of finite dimensional mul-
tilinear algebra, was utilized as a mathematical tool-language for for-
mulations of multidimensional fast Fourier transform (FFT) algorithms,
prevalent in all cross-ambiguity functions as well as multidimensional
correlation computations. An interactive Java-based stand-alone utility
was designed and developed to assist in this work through automatic
software source code generation of FFT algorithms from Kronecker al-
gebra formulations.

This alternative modality of using Kronecker algebra for mapping
multidimensional FFT’s to advanced hardware computing structures is
showing promising results for allowing to establish identifications be-
tween parallel-distributed computing constructs and the mathematical
expressions named by us functional primitives. Algorithms were formu-
lated in this work as factored compositions of functional primitives.

This method will, hopefully, contribute to make inferences in esti-
mating computing performance results of certain classes of large-scale
multidimensional signal processing algorithms from their mathematical
formulations in Kronecker products form, effecting, this way, a poten-
tial impact at the essential hardware implementation scales needed when
dealing with fundamental understandings of planetary surface energetics
and dynamics.
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